Modular forms: Fundamental domain

Поделиться
HTML-код
  • Опубликовано: 28 дек 2024

Комментарии • 11

  • @grog-i9m
    @grog-i9m 3 года назад +16

    That way of describing the fundamental domain is just amazing! I always saw it described in terms of the action of SL_2(Z) and this is way simpler!

    • @donnypassary5798
      @donnypassary5798 3 года назад +3

      Although technically these ways are equivalent, for me this is indeed easier to catch up!

  • @newtonswig
    @newtonswig 3 года назад +5

    I have to say, these lectures are everything I’d hoped for! Thanks so much!

  • @eric3813
    @eric3813 3 года назад +8

    Damn i Love modular forms!
    I am really greatfull for These awesome lectures!

  • @mathematics5573
    @mathematics5573 3 года назад +1

    this in incredibly technical, and beyond 99.999% of the population.

  • @trumpyla
    @trumpyla 3 года назад +1

    Wow! More content this is magical

  • @xaviergenereux6527
    @xaviergenereux6527 3 года назад +2

    In "a survey of algebraic coding theory", Berlekamp mentions Binary Quadratic Residue Codes. He then goes on to prove that they are invariant under the same action as we talked about for modular forms. Are they exemples of modular function?

  • @yunjiangjiang6146
    @yunjiangjiang6146 2 года назад +1

    I am a little confused by the lattices. Why can one of the two generating vectors always chosen to be 1? Why are w_2 in other parts of the fundamental domain not ambiguous?

  • @sewonhwang8564
    @sewonhwang8564 2 месяца назад

    The best

  • @igorLXIV
    @igorLXIV 3 года назад

    Could you consider suggesting some exercises in the future?
    As usual if you cannot solve simple exercises you have not understood 😊

  • @migarsormrapophis2755
    @migarsormrapophis2755 3 года назад +4

    yeeeeeeeeeeeeee