Modular forms: Classification

Поделиться
HTML-код
  • Опубликовано: 28 дек 2024

Комментарии • 14

  • @palhaassada3045
    @palhaassada3045 3 года назад +30

    Hi Prof. Borcherds, I don't know if you will ever see this, but thanks for all the videos. It's really important for those who are learning on their own :)
    I truly believe this is somewhat the future of teaching!

  • @rosieshen8431
    @rosieshen8431 3 года назад +7

    3:54 A note on why f(tau) does not have zero for Im(tau) >> 0:
    View f(q) as a function of q. Then f does not have zero for 0

  • @pandabearguy1
    @pandabearguy1 3 года назад +2

    Very interesting topic and nice lecture

  • @criskity
    @criskity 3 года назад +5

    This is mind-blowing. It's like a rabbit being pulled from a hat.

  • @antoinebrgt
    @antoinebrgt 3 года назад +2

    Great lecture as always!

    • @antoinebrgt
      @antoinebrgt 3 года назад +1

      Maybe one thing to add in conclusion would be the general formula for the dimension of the space of weight k modular forms, with the floor of k/12 and the distinction for k=2 mod 12 (I agree this is trivial from your last induction step, but I remember being quite impressed by this formula the first time I saw it!)

  • @ricott2
    @ricott2 3 года назад +3

    Can someone explain why the integral over the horizontal line @ 5:30 corresponds to an integral over a circle? If I plug in the values \tau=1/2 \pm i t I get -\exp{\mp \pi t}

    • @itaypikaz8071
      @itaypikaz8071 3 года назад

      Plugging in both values gives -\exp{-\pi \tau}, because the imaginary part is constant, and the difference of the real parts is an integer.

    • @ricott2
      @ricott2 3 года назад +1

      @@itaypikaz8071 Why do you have \tau in the exponent? You should have t > 1 after plugging in. I think I solved it, just write \tau = - 1/2 + i t + \alpha, with \alpha in [0,1] parametrizing the horizontal line, plug it in and you get q=- e^{-2\pi t} e^{2\pi i \alpha}, which gives the correct circle (after correcting for the extra minus sign)

    • @StatelessLiberty
      @StatelessLiberty 3 года назад +4

      It should be \tau= \pm 1/2 + i t , there is a mistake in the video

  • @migarsormrapophis2755
    @migarsormrapophis2755 3 года назад +4

    yeeeeeeeeeeeeeee

    • @yugiohsc
      @yugiohsc 3 года назад +2

      Yeeeeeeeeeeeeee

  • @Juan-yj2nn
    @Juan-yj2nn 3 года назад +1

    The comment section should be more active.