Step 1: Express in logarithmic form Take the natural logarithm (or log base 10) on both sides: log(4x)=log(72)\log(4^x) = \log(72)log(4x)=log(72) Using the logarithmic property log(ab)=blog(a)\log(a^b) = b\log(a)log(ab)=blog(a), we get: x⋅log(4)=log(72)x \cdot \log(4) = \log(72)x⋅log(4)=log(72)
Step 1: Express in logarithmic form
Take the natural logarithm (or log base 10) on both sides:
log(4x)=log(72)\log(4^x) = \log(72)log(4x)=log(72)
Using the logarithmic property log(ab)=blog(a)\log(a^b) = b\log(a)log(ab)=blog(a), we get:
x⋅log(4)=log(72)x \cdot \log(4) = \log(72)x⋅log(4)=log(72)
Nice one
çıtır çerez
@@ncilk yeah