각도법과 호도법의 의미, 호도법을 계속 쓰는 이유? (feat. 각도법도 60분법인 이유가 있다!)

Поделиться
HTML-код
  • Опубликовано: 25 ноя 2024

Комментарии • 106

  • @iloveyou_2000
    @iloveyou_2000 3 года назад +8

    철학적인 사고가 강한 영상이었어요. 주입식 수학공부에 정말 많이 지쳐있었는데 큰 영감을 얻고 갑니다. 다른 영상들도 찾아봐야겠네요. 좋은 내용 감사드려요!

    • @AngeloYeo
      @AngeloYeo  3 года назад +3

      감사합니다... 간단한 내용이지만 파고들려고 보면 의아한 내용이지요...ㅎㅎ 생각하시는데 도움 되었다니 다행입니다 ㅎㅎ 댓글 감사합니다 :D

  • @HomoSiliconiens
    @HomoSiliconiens 6 лет назад +21

    맞습니다. 60도분법은 현대적인 미분법(16세기)이 사용되기 이전부터 사용하던 방식이고, 호도법은 미분법이 나온 후에 미분법을 간략하게 만들기 위해 도입된 방법입니다.
    자연 로그도 마찬가지구요. 원래는 log10이 먼저 나왔지만 미적분법이 도입되면서 계산을 간략하게 하기 위해 자연로그와 상수 e가 새롭게 도입된 것입니다.

    • @AngeloYeo
      @AngeloYeo  6 лет назад +3

      코멘트 감사합니다! 생각해보니 그렇네요... 자연상수나 자연로그도 미분 할 때 결과를 깔끔하게 내려고 사용하는걸 보면 미분이 수학이 사용되는 여러 분야에서 참 많은 일을 하고 있구나 싶네요 ! ㅎㅎ

    • @frisebichon1519
      @frisebichon1519 3 года назад

      고딩때는 로그는 log10을 먼저 생각하지만 대딩때는 모두 ln을....ㅎㅎ

  • @Dddd-ko2xn
    @Dddd-ko2xn 4 года назад +1

    강의들이 매우 좋아서 도움 많이 받았습니다. 감사해요! 호도법 그냥 외웠는데 이유랑 정의들을 알고나니 맘이 편해지네요.

    • @AngeloYeo
      @AngeloYeo  4 года назад +1

      안녕하세요~ 도움 되었다니 다행입니다 ^^ 댓글 감사합니다 ! ♡

  • @QQ-yk8qr
    @QQ-yk8qr 5 лет назад +3

    우왕! 요즘 취미로 미분 도전하기 위해 호도법 이해하려고 노력중인데 너무 감사드립니다! 지식나눔 감동입니다!

    • @AngeloYeo
      @AngeloYeo  5 лет назад +1

      리도님 팬이신가요 ㅋㅋ 댓글 감사드려요~ 공부하시는데 도움되면 좋겠습니다 :)

    • @QQ-yk8qr
      @QQ-yk8qr 5 лет назад

      앗! 댓글 감사합니닷! 영광입니닷! 10:17 설명 너무 좋고 이해가 쉬워서 감동이에욧!! 야~얼마나 갔어? ㅋㅋ

    • @AngeloYeo
      @AngeloYeo  5 лет назад

      @@QQ-yk8qr 저도 호도법의 그 부분을 깨닫고(?) 너무 신기했습니다 ㅎ 재밌게 봐주셔서 감사합니다! ㅎㅎ

  • @Htht890
    @Htht890 6 месяцев назад

    상당히 설득력있는 좋은 내용이네요

  • @richardkimn
    @richardkimn 5 лет назад +5

    아... 각도법을 사용하면 삼각함수 도함수에 Pi/180라는 상수가 계속 따라 다니겠군요. 0.01745... 실제로 엑셀로 lim sinx/x 돌려보면 0.01745...로 수렴하네요. 일반적인 삼각함수 도함수에 사용되는 각도는 Radian값으로 한다는 것도 이제 알았습니다. 다른것도 생각해 보니 원의 호 넓이나 호의 길이 구하는 것도 Radian쓰면 Pi가 제거되서 값이 깔끔해 지네요. 제가 학교 다닐때 유튜브가 있었다면 좋았을텐데요. 하나마나한 소리... 죄송하고요. 오늘 당신은 한사람을 살렸습니다. ㅋㅋ 감사합니다.

  • @Matinata-b8y
    @Matinata-b8y 10 месяцев назад +1

    60분법이라는 이름처럼 가장 작도하기 쉬운 정삼각형의 내각의 크기를 기준으로 각을 표시할 때 정삼각형의 내각의 크기를 1도로 잡으면 대부분의 각을 소수나 분수로 표현하는 불편이 생겨서 적당한 크기로 잡은 건데 제 추측에는 두 자리 정수 중에서 약수의 개수가 가장 많은 60과 72중에서 사용하기 편리한 60으로 잡은거 같구요
    호도법은 미분의 편리성을 위해서도 필요한 각의 표시방법이지만 만약에 호도법이 아닌 다른 방법으로 각을 표시한다면 삼각함수의 그래프와 다른 함수의 그래프를 동일좌표평면에 아예 나타낼 수가 없다는 문제를 해결하는 역할도 하는 거 같아요

    • @AngeloYeo
      @AngeloYeo  10 месяцев назад +1

      코멘트 감사합니다. 호도법이 아닌 다른 각도법으로 표시하면 동일 좌표에 표시할 수 없다는게 어떤 의미인지 조금만 더 설명 부탁드려도 될까요?

    • @Matinata-b8y
      @Matinata-b8y 10 месяцев назад

      @@AngeloYeo 사인함수의 그래프에 (0,0)에서 접선을 그리면 접선의 방정식이 y=x가 되는데 x축을 각도법으로 표시하면 (1,1) (2,2) 이런 점의 위치를 정할 수가 없다는 문제가 생기는거 같습니다

  • @ph-bg5pj
    @ph-bg5pj 3 года назад

    분석력 훌륭하시네요.
    양질의 영상 잘 보고 깨달음 얻고 갑니다.

  • @117hippo3
    @117hippo3 3 года назад +1

    제가 배운바로는 호도법의 정의는 대수체계에서의 계산을 원할하게 위해서라고 알고 있습니다. 각도는 수의 체계에 들어가지 않기 때문에 수식의 계산 (미, 적분 포함)을 하기 위해서 각도를 수의체계인 호도법으로 바꾸어 계산 하는거라고 배웠습니다. 원의 관점에서 볼때 각도와 호는 정비례 (2π=360, 즉, 2X호도=각도) 관계이기 때문에 향후 미적분으로까지 넘어가 수의 계산을 원할하게 하기 위한것..,이라고 은사님께 배운 적이 있습니다. ^^ 물론 공돌교수님의 정의도 훌륭합니다!! ^^

    • @AngeloYeo
      @AngeloYeo  3 года назад

      안녕하세요. 계속해서 관련 내용으로 댓글을 달아주시는 분들이 계셔서... 왜 기존의 각도법에 이용되는 숫자는 실수가 아니라고 하시는지 저는 도무지 이해할 수가 없습니다...

  • @하호준-b4j
    @하호준-b4j 6 лет назад +3

    유익한 영상이었습니다.
    왜 배우냐??라고 묻는다면 나중에 배울 내용의 계산을 쉽게 할려고가 정답이긴 한데...
    각도를 처음 배우는 초등학생들에게 미적분, 극한등을 쉽게 계산하기 위해 필요한 라디안을 도입하긴 어려우니
    원을 360등분한 360°를 가르친다고 알고 있습니다.
    360은 3,4,5,6,8,9,10,12 등으로 나우어 지므로 정다각형의 도입에도 유용하죠.
    나중에 대학교에서 주로 다룰 삼각함수, 쌍곡함수, 의 미분 적분 그리고 라플라스변환등등을 위해서
    어느 순간 즉, 대입 전에 라디안을 도입할 필요가 있으므로 고등학교에서 라디안을 언급하고 삼각함수를 사용하며
    중학교에서는 삼각함수를 다루지 않고 90°이내의 삼각비 정도를 다루는 걸로 알고있습니다.

    • @AngeloYeo
      @AngeloYeo  6 лет назад +1

      역시 많은 분들이 저보다 더 잘 알고 계시는군요 ㅎ
      기초적인 내용이지만 혹시나 필요하신 분들이 있으실 수 있다는 생각에 내용을 정리해 영상을 만들어보았습니다.
      코멘트 감사드립니다 :)

  • @slsi93
    @slsi93 3 года назад +1

    이번에 늦은나이에 대학가면서 수학공부를 미리 하고있는데 채널 너무 잘보고 있습니다!

    • @AngeloYeo
      @AngeloYeo  3 года назад

      오... 도움이 되어드릴 수 있다니 다행입니다 ^^~ 열공하셔서 좋은 성과 얻으시길 기원합니다

  • @Goldmask1029k
    @Goldmask1029k 5 лет назад +3

    좋은 강의 감사합니다.이런 이야기 저 고등학생떄 접할 수 있었다면 좋았을텐데 ㅜㅜㅜ..이게 왜 있지. 뭐 때문에 이거 배우는거지. 이런 질문을 해소해야 그것에 기반해서 지식을 쌓아올리는 습관이 들어있어 암기식 수업엔 잘 적응 못했어요.허수에 대한 이야기 구글 검색하다 방문했어요. 우연히 좋은 채널 알게 되어 좋습니다.구독하고 갈게요.영상은 전부 다 찬찬히 보겠습니다.

  • @흑흑-p1v
    @흑흑-p1v 4 года назад +1

    저도 수학공부할때 저만의 정의를 내리는거 좋아해요!! 영상잘봤습니다!

  • @최문규-o4d
    @최문규-o4d 4 года назад +1

    저는 호도법이 쓰인 이유가 각도를 하나의 실수와 일대일대응시키기 위해 생겼다고 봅니다
    1°는 1이라는 실수와 동일하지 않지만 1 rad 은 l = r•각도(rad) 이므로 1•1(rad)이 되므로 각도가 1rad이고 반지름이 1인 원의 호의 길이인 1과 대응이 됩니다. 따라서 1 rad =1 이라는 대응이 됩니다.
    이것의 유용성은 삼각함수와 일반실수가 동시에 존재하는 상황에 매우 유용합니다
    예를들어 y=x sinx를 봅시다.
    여기서 x는 실숫값이고 sinx에 있는 x는 각도값이므로 동시에 표현하기 어려워 보입니다
    하지만 우리는 rad을 통해 x라는 변수에 rad을 단위를 붙여 두 상황을 표현할 수 있습니다
    X의 경우 Xrad은 1•Xrad or X•1rad 이고 둘다 실수 X와 대응이 됩니다
    또한 sin[x(rad)]은 1•sin[x(rad)]이므로 특정 각도xrad에해당하는 실수sin값이 나오게 됩니다.
    만약 °를 단위로한다면 어떨까요?
    X의 경우 X°는 특정 실수와의 관계식이 없기 때문에 X라는 실수값에 대응이 되지 않습니다.
    만약 호도법이 존재하지 않는다 가정하고 180/pi °를 반지름에 대한 호의 길이가 같은 각도라고 정의를 하게된다면
    l= r•각도[°]•pi/180이므로
    실수 x= 각도 x•pi/180 [°]가 됩니다.
    그렇다면 실수x와 각도x°를 동시에표현하고 싶은y=x sinx함수를 각도°를 동시에 붙여서 표현하면 매우 복잡한 식이 됩니다.
    Sinx[°]는 특정 실수값이 대응되므로 상관 없지만
    x는 특정 각도를 통해 특정 실수 x값에 대응시켜야 하므로
    y= x[°]•pi/180 • sin[x °]가 됩니다. 이렇게 보면 sinx°함수를 그리기 위해선 주기가 360인 함수를 졸라길게 그려야되므로 엄청난 시간 낭비가 되며 라디안때보다 식이 더럽게 됩니다.
    여담으로 1 rad = 180/pi°이므로 sinx[rad] = sin x•180/pi[°]이므로 미분시 180/pi가 나온다는 발상은 좀 애매한게
    rad을 기준으로 한 sin함수가 그런거지 실제로 X변수에 °를 단위로한 sin함수는 그냥 sinx[°]입니다.
    Sinx(rad)은 °를 기준으로 한 함수 관점에선 그냥 standard한 sinx가 아니라 주기가 2pi로 되게 기존 sinx[°]를 180/pi만큼 줄여서 만든 sin[x°]•180/pi일 뿐이므로
    한마디로 °를 기준으로 한 sinx(rad)함수 미분이 어렵게 된다는 건 순전히 rad을 기준으로 한 사람들에게만 해당한 것입니다. 둘다 각각의 단위에선 미분이 매우 쉅습니다 d sinx/dx = cosx로.
    하지만 °를 단위로 갖는 함수는 주기가 매우길어불편하며 삼각함수를 제외한 각도를 통한 실수표현이 어렵기 때문에 쓰지 않습니다

    • @최문규-o4d
      @최문규-o4d 4 года назад

      만약 특정물체가 3m/s로 이동하고 주기가 3초인 삼각함수가 속도에 곱해져있다고 봅시다.
      그러면 그 물체의 이동거리에 대한 함수는
      y= 3t•sin(2pi/3•t) 이며
      변수t의 차원은 s•(rad)이겠죠
      또한 y의 차원m이겠죠
      이 식에서 물체의 순간속도[m/s]를 구하기 위해선 두 방정식에 속도변수t만큼 미분하면 되므로 속도= d[3t•sin(2pi/3•t)]/dt를 하면 됩니다.
      따라서 각도를 표현하는 2•pi•t/3과
      이동거리인 실수값 3t를
      각도단위 rad을 가진 공통변수 t를 갖고 간단히 표현해버린 거죠

    • @최문규-o4d
      @최문규-o4d 4 года назад +1

      m•rad/s 아니냐고 하실 수 있지만
      이미 라디안값을 실수로 변환하여
      3[m/s] • t[s•rad]= 3[m/s]•t[s] =3t[m] 로한 것이고
      y값은 이동거리를 나타내는 실수라는걸 명시했기 때문에 함수값의 차원은 m/s입니다.
      rad은 차원이 없는 단위이며 단지 각도라는 추상적인 것을 통해 크기를가진 실수를 매우쉽게 표현하기 위한 것입니다.

    • @Snowflake_tv
      @Snowflake_tv 4 года назад +2

      하.. 라디안... 왜 단위를 생략하는지, 고딩때 학교쌤한테 물어봐도 이해할만하게 안알려줫어요.. 서울대 수학교육과 나온 여선생이었는데... l=r*각도(rad)이란 건 아는데, 머 교과서나 그 쌤이 칠판에 증명하는 거 보니까 도끼리 분자분모가 약분되면서 사라져서 그런가 했는데... 근데 아무리 그래도 단위를 안쓰면 이게 각도인지 선분인지 모르잖아요. cm도 다 적는데... 왜 이건 각도라고 따로 표시 안해주는지... 진짜 이해 안갓거든요. ㅠㅠ 진짜 아무리 좋은 학교 좋은 교사라고 해도 학생이 어느 포인트를 궁금해하는지, 이에 대한 답변을 해줄 대비를 안하면 진짜 별론것같아요.

  • @bard2x
    @bard2x Год назад

    당신은 그저 빛….!!!

  • @LeeYoungHeun
    @LeeYoungHeun 4 года назад +2

    각도법의 기원은 고대문명입니다. 당시에 과학이 미발달시에는 달을 기준으로 시간을 정했고 1개월을 30일로 하여, 1년을 12개월 360일로 계산하였습니다. 수학과 천문학이 발전하면서 1년이 365로 확정되기 전까지, 10진법, 12진법, 360진법은 당연한 수 체계입니다.물론 그것이 정삼각형의 각도를 다루는데 십진법의 정수로 나타내지만, 고대 이집트인은 벌써 분수의 개념을 알고 있었으니까 별로 안중요합니다. 하루를 12시간으로 근대에와서는 24로 나눈것도 12진법의 유산이내요.

    • @AngeloYeo
      @AngeloYeo  4 года назад +1

      좋은 댓글 감사합니다 :) 이집트까지 기원이 거슬러가리라고는 생각하지 못했네요 ㅎㅎ 찾아보니 이외에도 여러가지 기원설이 있네요 ㅎ 제가 영상에서 언급했던 부분과 과장 유사한 주장은 바빌로니아 사람들이 정삼각형을 원의 기본단위로 삼고 그 당시 사용되던 60분법을 적용한 것이라고 말하는 학설도 있는 것 같습니다 ㅎ
      잘 몰랐던 정보인데 혹시 다음번에 영상 재촬영하게 된다면 여러가지 학설을 조사해서 언급할 수 있도록 하겠습니다. 감사합니다 ^^

    • @LeeYoungHeun
      @LeeYoungHeun 4 года назад

      @@AngeloYeo 저도 고등학교때 들은 이야기라서 확실한것은 찾아보시는 것이 좋겠습니다.

  • @hjjin8045
    @hjjin8045 Год назад

    멍청이라 너무 어렵습니다...
    각도법으로 했을 때pi / (180도) 이게 뭔가 이질감이 들어서 불편한것같습니다.
    각도법으로 했을 때 sin세타를 길이 아니면 그냥 숫자로 생각했어서 sin세타도 / 세타도 이면 그 값의 단위는 (길이/각도)로 표시해줘야 되니까 마지막에 pi (숫자 혹은 길이)/ 180(각도) 가 곱해진다고 봤습니다.
    호도법으로 했을 때 세타를 호의 길이로 생각해서 1 X sin세타(길이) / 1 X 세타(길이) 의 극한값이 1이라고 일단 이해했습니다.
    구체적으로 보여야 이해가 가고 추상적인 숫자로 잘 와닿지가 않긴 하는데
    sin 1, sin2, sin0.0000000000000000023 이런식으로 생각해보니까 뭔가 꼭 길이로 생각할 필요가 없을 것 같기도 하고 뭐...그렇습니다. 제대로 이해하고 있는건지 모르겠네요 ㅠㅠ

  • @송행운-s2j
    @송행운-s2j 3 года назад +1

    전기기능사, 전기기사 기초지식으로 반드시 알아야되는것이 삼각함수, 호도법, 미적분...

  • @jslee0133
    @jslee0133 6 лет назад +5

    각도든 시간이든 60분법을 쓰는 이유는 약수가 많아서 라고 생각했었는데 뭐 결국 똑같은 소리네요. 몇 등분을 하던 자연수로 나눠지게 하려고. 60은 1,2,3,4,5,6등분 다 되니깐. 삼각함수 미분이 간단한게 호도법 때문이었다는건 생각 못하고 있었는데 신기하네요

    • @AngeloYeo
      @AngeloYeo  6 лет назад +1

      시간도 60진법을 쓴다는 건 간과하고 있었네요... 약수가 많아서라... 좋은 코멘트 감사합니다 ^^

  • @지송윤-f8n
    @지송윤-f8n Год назад

    20년 만에 미분 보다 잠들어버림요.
    당시엔 문제를 풀기위해 그냥 외워서 적었는데...

  • @WalkWayOnSnow
    @WalkWayOnSnow 5 лет назад

    감사합니다!

  • @Mathetraveling
    @Mathetraveling 5 лет назад +3

    저도 미분이 큰 이유라고 영상을 만들었었는데 댓글로 자기가 아는 중학 수준에 지식만 나열하면서 제 영상 폄하하는거 보고 영상 멈췄었는데 이 영상보니까 너무 반갑고 고맙기까지 하네요..응원합니다.. 어줍지않은 댓글에 상처받지 마시고 좋은 영상 많이 만들어주세요~ 응원합니다^^

    • @AngeloYeo
      @AngeloYeo  5 лет назад +1

      저도 마지막으로 영상을 만든지도 몇 달이 지났네요 ㅎ 사람들의 응원이 있어도 계속 뭔가를 만들어내기 힘든데 오히려 반대라면 더 힘들지요... :) 응원 감사드려요 ~ ^^

    • @QQ-yk8qr
      @QQ-yk8qr 5 лет назад +1

      앗!! 수떠남쌤님 여기서 뵙네요!! 수떠남님 영상이 제게 큰 도움이 되었어요!

    • @Mathetraveling
      @Mathetraveling 5 лет назад

      @@QQ-yk8qr 감사합니다ㅠ

  • @이면지-e1f
    @이면지-e1f Год назад

    안녕하세요!
    14:24 부터 전개가 어떻게 그런식이 나온건가요?

    • @AngeloYeo
      @AngeloYeo  Год назад

      14:24에 나오는 수식 전개는 미분계수의 정의를 이용하는 것입니다.

  • @repoleved5767
    @repoleved5767 6 лет назад +1

    항상 잘 보고 있습니다😀

    • @AngeloYeo
      @AngeloYeo  6 лет назад +1

      응원의 메세지 감사합니다!

  • @고경록-i6o
    @고경록-i6o 6 лет назад +2

    와... 미처 생각하지 못했던 부분인데. 이렇게 깔끔하게 설명하시다니. 잘 배웠습니다.
    p.s. 설명하실때 쓰는 프로그램이 무엇이신가요?

    • @AngeloYeo
      @AngeloYeo  6 лет назад +2

      안녕하세요. 댓글 감사합니다. 판서 프로그램은 아이캔노트 라는 프로그램이구요, 화면 녹화는 오캠이라는 소프트웨어를 사용하고 있습니다 ^^

    • @whatthehey4046
      @whatthehey4046 5 лет назад

      @@AngeloYeo 판서는 마우스로 하신건가요?

    • @AngeloYeo
      @AngeloYeo  5 лет назад

      아니요... 와콤타블렛으로 했습니다 ㅎㅎ

  • @필즈더클래식중계센터
    @필즈더클래식중계센터 5 лет назад +1

    제가 이해하고 있는 60분법의 360도 개념은 오래전 1년을 360일로 본 것에서 시작한 것이 아닌가 싶습니다. 시간을 각도로 표현한 것이라 이해하고 있구요. 제 이해가 맞는지는 모르겠네요. ㅎㅎㅎ

    • @AngeloYeo
      @AngeloYeo  5 лет назад

      안녕하세요. 저도 그렇게 얘기하는 걸 들은 적이 있습니다 ㅎㅎ 가설로 기원을 어떻게 설명하는지도 중요한데 어떤 기원이든간에 현실적으로 아직까지 360도 개념이 사용되고 있을만한 수학적인 근거를 찾다보니 삼각형에 대한 얘기를 꺼내게 되었습니다 ^^~ 댓글 감사합니다

  • @돌산깡
    @돌산깡 4 года назад

    그렇군요!

  • @jhamjpd3552
    @jhamjpd3552 6 лет назад +2

    오일러의 정리에서도 호도법이 편하죠

  • @안채원-s1z
    @안채원-s1z 3 года назад

    60분법을 이용한다면 함수를 그릴 수 없는 이유가 60분법이 실수가 아니라서(수직선상에 나타낼 수 없어서)라고 알고 있어요

    • @AngeloYeo
      @AngeloYeo  3 года назад +1

      그건 잘못된 상식이라고 알고있습니다. 60분법도 어쨋든 실수로 수를 표현하는 것 아닐까요?

    • @안채원-s1z
      @안채원-s1z 3 года назад

      1도와 361도는 분명 361도가 숫자가 크지만 각도의 시각에서 보면 둘은 같기 때문에..라고 들었어요

    • @AngeloYeo
      @AngeloYeo  3 года назад +1

      @@안채원-s1z 그럼 호도법으로는 pi와 3pi가 같은건가요?

  • @sorbine
    @sorbine Год назад

    필기할때 어떤 시스템(?)으로 쓰시는건가요?

    • @AngeloYeo
      @AngeloYeo  Год назад

      음... 이 당시에는 컴퓨터에 iCanNote 키고 타블렛 하나 놓고 적었던 걸로 기억합니다 ㅎㅎ

    • @sorbine
      @sorbine Год назад

      @@AngeloYeo 감사합니다 검색해 볼게요~

  • @myrack20
    @myrack20 2 года назад

    포병출신 : 호도법은 공학적의미로 밀공식을 사용하기 위해서 쓴다. 200밀 미만에서는 싸인 쎄타가 호도법 세랑 거의 같다고 하기때문이다.

    • @AngeloYeo
      @AngeloYeo  2 года назад

      *포병출신* 이라는 문구에 감탄을 금하지 못하였읍니다

  • @isaaclee6719
    @isaaclee6719 3 года назад +1

    1. 호도법이 원을 표현하는데 유리하고 더 나가서 삼각함수 그것도 삼각함수를 미분하는데 유용하구나. 미분결과가 깔끔하게 나오는구나. 호도법이 도가 없고 파이=180도 라서 그렇구나. 13:50
    2. 사인x를 미분해주면 코사인x가 나오는게 호도법을 사용했기 때문에 그렇게 된거구나 21:25
    3. 그러고보니 각도법 호도법 모두 결국 비율이구나. 혼자 독립해서 존재하는값이 아니구나. 각도법은 원안에서의 둘사이간의 각도의 비율. 호도법은 반지름에 대한 원둘레의 비율. 즉 관계를 이어주는데 즉 변환해주는데 쓰인다.
    4. 값이 계속 반복되는게 그 증거다. 둘간의 관계를 나타내주니까 값이 반복된다. 값이 증가해도 결국 같은자리에서 맴돈다.

  • @4everjhs
    @4everjhs 2 года назад

    그니깐 뭘 배우더라도 왜 이걸 배워야 되는지 실생활에 어디에 사용되는지 알려주면 공부하기 더 좋았을텐데…

  • @jhl2458
    @jhl2458 2 года назад +1

    호도법은 60분법으로 표시된 각도를 실수에 대응시키는 의의가 있습니다

    • @AngeloYeo
      @AngeloYeo  2 года назад

      코멘트 감사합니다. 여쭤보자면, 60분법은 real number로 각도를 표기하는 방법이 아닌건가요?

    • @jhl2458
      @jhl2458 2 года назад +1

      @@AngeloYeo 20:37 π/180도 가 뭘 뜻할까요? 나아가 π+180도는 무엇을 뜻할까요?
      물론 측량하여 수치로 표현한 것이고 그 수치 자체는 실수이지만 단위차원이 엄연히 존재하여 실수와는 연산이 안되요
      수는 그 자체로 추상적인 개념인데 다른 개념과 매핑이 되니까(180도, 사과10박스 10시간 등) 문제가 발생합니다
      보통 라디안을 무차원이라서 단위를 제거하여 실수 취급할수있다고 얘기합니다 (20:59 여기서 처럼요)
      60분법은 한바퀴를 360에 대응시키면서 시작된 방식이죠. 그리고 호와 중심각의 비례관계를 이용하는것이고
      호도법은 1라디안을 먼저 잘정의한 뒤 호와 중심각의 비례관계를 이용하여 라디안끼리의 비(real number)로 표현이 가능합니다
      즉 호도법은 원주를 감안하여 1라디안을 먼저 이론적으로 잘 정의하여 시작된 방법이고
      60분법은 원주와 무관하게 360을 대응시키면서 시작된 방식입니다.
      미분이나 합성함수등에 있어 호도법이 유용한 이유의 핵심은 여기에 있다고 봅니다
      단위원에서 호의길이가 π가 되는 부채꼴의 중심각은 1라디안의 π배(실수)입니다
      또한 θ×r=l 을 만족합니다. 호의길이 l은 반지름 r의 θ배(실수)가 되죠
      그래서 라디안을 l/r로 정의하기도 합니다. 물론 다른 정의와는 동치관계죠

    • @지금타도되나여
      @지금타도되나여 5 месяцев назад

      ​@@jhl2458와! 맹점을 정확하게 잡았네요. 느낌 왔습니다^^

  • @ljh3825
    @ljh3825 5 лет назад +2

    호도법은 따지고보면 단위가 없는건가요?
    반지름길이를 호의길이로 나눈다는 의미는 같은 단위로 나누기 때문에 단위 자체가 없어져서 이렇게 하면 실수 체계인 숫자 1인지 각을 표현 하는 숫자 1인지 구별하기위해서 rad 용어를 사용하는건가요? 그럼 라디안은 단위 개념이 맞나요?

    • @AngeloYeo
      @AngeloYeo  5 лет назад

      정답입니다 ~ 매우 정확하게 이해하셨어요!

    • @kwonke2013
      @kwonke2013 2 года назад

      단위가 없는 게 아니라 엄밀하게는 차원이 없는 단위죠. 각도는 차원을 가지지 않기 때문에 60분법을 표현하는 도, 호도법을 표현하는 라디안 모두 무차원 단위입니다.

  • @카라바조-d9o
    @카라바조-d9o 3 года назад

    고등학교 수학에서 호도법을 도입하는 이유는 삼각비를 삼각함수로 확장하기 위함입니다. 함수에서 정의역은 실수전체인데, 60분법을 사용하면 실수가 아니라 연속적인 함수 그래프를 그릴수 없습니다. 호도법은 호의길이(반지름이 1인)를 각으로 사용하는 방법이라 길이는 실수가 되어서 정의역으로 사용할 수 있게 되는거죠. 그래서 호도법을 배우고 함수의 그래프를 배우게 되는 겁니다.

    • @AngeloYeo
      @AngeloYeo  3 года назад +1

      좋은 말씀 감사합니다 ㅎㅎ 해당 내용에 대해 말씀해주신 분들이 계셨는데요.
      60분법을 쓰면 그 각도는 왜 실수가 아닌건지 여쭤봐도 괜찮을까요?

    • @카라바조-d9o
      @카라바조-d9o 3 года назад

      @@AngeloYeo 도를 60등분해서 분으로 분을 60등분해서 초로 세분하는데 결국은 이산적인 수(정수 처럼)가 되고, 연속인 실수는 되지 못하는 거죠

    • @AngeloYeo
      @AngeloYeo  3 года назад +1

      그럼 60.15도 같이 각도에 실수를 사용하는건 안되는 이유가 있을까요?

    • @카라바조-d9o
      @카라바조-d9o 3 года назад

      @@AngeloYeo 60.15도는 60분법 즉, 60진법이고 실수는 10진법을 사용하니 다르지 않을까요? 정의역은 60분법, 치역은 10진법을 사용하면 함수의 합성에도 문제가 생길것 같구요

    • @AngeloYeo
      @AngeloYeo  3 года назад +1

      그렇다고해도 60분법으로 실수체계를 나타내지 못할 이유는 없을 것 같습니다 ㅎㅎ 또... 그럼 1.5시간은 1시간 30분 아닌가요? 0.5시간이란 말은 어떻게 나오는걸까요? 10진법과 60진법이 정말로 상호호환이 불가능하진 않을 것 같습니다 ㅎㅎ 말씀하신 것과 같은 이유를 드시는 분들이 많으신데 저는 그 말은 사실이 아니라고 생각합니다

  • @에스-i8u
    @에스-i8u 2 года назад

    호도법의 정의를 길이의 비율로 정의한다라 ..
    글쎄요

    • @AngeloYeo
      @AngeloYeo  2 года назад

      좋은 의견 있으시면 말씀해주세요. 댓글 고정해드리고 다른 분들도 잘 보실 수 있게 하겠습니다.

    • @에스-i8u
      @에스-i8u 2 года назад

      @@AngeloYeo 네
      길이의 비율로 호도법을 정의하면
      이런것은 어떻게 설명이 되는지 궁금합니다.
      길이의 비율로 정의를 한다면
      라디안은 무차원이지 않습니까??
      그러면 라디안과 육십분법 사이의
      호환이 어떻게 가능한지 설명부탁합니다.
      예를들어 파이라디안=180도 인데
      길이의 비율로 라디안을 정의한다면
      좌변은 무차원이고 우변은 각도라는 차원이라 식이 성립하지 않는다고 생각합니다.
      따라서
      길이의 비율로 라디안을 정의한다는게
      납득이 가지않습니다

  • @tiramon100
    @tiramon100 3 года назад

    왜 이리 번거롭게 설명하는지 모르겠네요.
    단지, 삼각함수의 그래프에서 각도를 나타내는 x축이 길이를 나타내는 함수치 y에 대응하려면
    두 축의 요소가 길이의 단위를 사용 할 수 밖에 없는 거
    이유는 그거 하나죠.

    • @AngeloYeo
      @AngeloYeo  3 года назад +4

      길이 단위를 꼭 입력으로 사용해야하는 이유가 어떤것이죠? 각도를 입력으로 넣으면 삼각함수가 정의될 수 없나요? x축이 60분법 각도로 되어있는 삼각함수 그래프는 보신적 없으신건가요?
      정말 많은 분들이 tiramon님 처럼 60분법을 이용하는 것은 각도가 실수가 아니기 때문이라고 주장하시는데 터무니 없는 주장입니다. 그런 경우 모두 라디안 각도가 dimensionless number라는 점과 단위가 어떤 것인지 그 개념을 헷갈려 하시는 경우에 불과합니다.
      솔직히 말씀드리면 이런 주장에 매번 반박해 드리는 게 지칠정도입니다.
      그리고 심지어 말씀하신 길이 단위를 입력으로 넣는 다는 것도 잘못된 말입니다. 라디안은 무차원 수입니다. 길이 단위가 포함된 단위가 아닙니다.

    • @tiramon100
      @tiramon100 3 года назад +1

      라디안은 단위원 호의 길이를 기준으로 합니다. 그러므로 빗변이 1이거나 밑변이 1인 직각삼각형의 어느 변의 길이를 나타내는 삼각함수와 자연스럽게 대응이 되죠
      각도는 길이와 상관이 없어요.
      Y축 길이 1을 1cm로 한다면
      X축의 90도는 몇 cm로 표시 하게요.

    • @sjoongoh
      @sjoongoh Год назад

      @@tiramon100 축은 단위를 제외하고 쓰는 겁니다. 각도법으로 x축에 그려도 전혀 문제없습니다. 고등학교때 라디안이 실수라서....이렇게 가르침을 받으면 이런 착각을 하게 되죠. 완전 잘못된 생각이죠. 라디안은 그냥 단위가 다른 각을 다루는 정의일 뿐입니다.

    • @user-be4vj4rn8j
      @user-be4vj4rn8j Год назад

      @@sjoongoh 그럼 1도를 수직선상에 나타내고 싶으면 그냥 1에 점을 찍으면 되는거에요??

    • @지금타도되나여
      @지금타도되나여 5 месяцев назад

      ​@@tiramon100생각해보니 님말이 맞는듯 해요. 좌표상에 표현 하는 건 상관없어 보이지만 좌변과 우변 사이에 등호를 넣고 대수적으로 표현하려니 문제가 보이네요.

  • @frisebichon1519
    @frisebichon1519 3 года назад +1

    수학교육에서 가장 선행되어야 할 것이 용어에 대한 설명이라고 봅니다.
    각도법, 호도법...이렇게 말하면 대부분 뭔 소린지 이해 못합니다.
    각도법: 말 그대로 각도가 중심이 되어 모든것을 표현하는 방식....
    호도법: 반대로 호의 길이를 중심으로 하여 각도를 역으로 찾는 방식
    즉 호도법은 호의 길이에 대한 각도의 비율임..

  • @845marine845
    @845marine845 2 года назад

    딱 중간까지만 ...나머지는 공부 좀 하고요..

  • @YMtv321
    @YMtv321 3 года назад +2

    아니 ㅋㅋㅋㅋㅋ 여기 사람들 왜 단위랑 수의 체계를 헛갈리는거지.....
    각도,시간,길이 모두 실수로 표기하잖아 호의 길이,삼각형 변의 길이 모두 1cm,0.1m 얘네도 실수임
    근데 호도법에서는 각도에서의 도와 같은 단위가 없어지니까 계산이 편한거라고 ㅋㅋㅋㅋ
    호도법 1 (rad,단위는 없으나 호도법인 걸 표시)이나 60분법 1도나 둘 다 실수라고 ..
    게시자님이 쉽게 알려주는데 지들 어줍잖게 배운걸로 아는 체하고 싶다가
    밑천 드러나니까 열폭이나하고 말이야 ㅉㅉ

    • @AngeloYeo
      @AngeloYeo  3 года назад +1

      저도 저런 소문이 어디서 돌았는지 답답합니다 ㅠㅠ ㅎㅎ

    • @YMtv321
      @YMtv321 3 года назад +1

      @@AngeloYeo 근데 저도 저렇게 배우긴 했어요 ㅋㅋ 아마 그렇게 가르치는 분들도 그렇게 배우고 가르치는듯하네요 ㅠㅠ 무슨 뜻인지 이해하지만 오류가 있음은 분명하죠

    • @AngeloYeo
      @AngeloYeo  3 года назад +1

      공감이에요 ㅎㅎ 저도 예전에 저런 얘기를 들은 적이 있는데 지금 생각해보면 이상하네요 ㅎㅎ

    • @user-be4vj4rn8j
      @user-be4vj4rn8j Год назад

      1라디안이나 1도나 둘다 실수라면 1도는 실수 몇에 대응되는 거에요??

  • @A아르퀴메데스
    @A아르퀴메데스 3 года назад

    www.mathlove.kr/v2/stories/stories3.html?code=view&idx=15
    강의를 듣고 더 찾아보다 위 링크의 글도 발견하게 되었습니다, 덕분에 묻어두었던 의문을 많이 풀게되었습니다,

    • @AngeloYeo
      @AngeloYeo  3 года назад

      😁 도움된 것 같아 기분이 좋네요 ㅎㅎ