FIDLE / Bases , concepts et histoire des réseaux de neurones

Поделиться
HTML-код
  • Опубликовано: 9 янв 2025

Комментарии • 23

  • @simonettimusic
    @simonettimusic 10 месяцев назад +1

    Pour une vidéo d'introduction, déjà beaucoup de choses très instructives, puis la prise en main de docker est vraiment très conviviale. Cela encourage vraiment à regarder la suite! Encore merci!

    • @CNRS-FIDLE
      @CNRS-FIDLE  10 месяцев назад

      Merci beaucoup pour votre retour... et bonne continuation ! ;-)

  • @jarsal_firahel
    @jarsal_firahel Год назад +1

    La meilleure formation FR sur l'intelligence artificielle, c'est juste incroyable !
    Vous devriez regarder ce qui se fait aux US en matière d'enseignement en ligne, je pense surtout au cours CS50 du professeur David Malan à Harvard, ça pourrait vous donner des idées en termes d'interface et d'interactivité si vous voulez encore améliorer ce cours

  • @GammaOmega-o3t
    @GammaOmega-o3t Год назад +4

    Quel plaisir de suivre cette formation, super contenu et en plus dans la bonne humeur ! :) Hâte de voir les prochaines vidéos !

    • @CNRS-FIDLE
      @CNRS-FIDLE  Год назад

      Merci beaucoup, rendez-vous jeudi, 14h !

  • @EricMeurville
    @EricMeurville 9 месяцев назад +1

    Bonjour. Merci pour votre présentation. Ma question est relative à votre slide 91. J'imagine que comme dans le cas de la régression, la "loss function" est calculée à partir de l'ensemble des observations que contient le dataset (i.e. le nuage de points). Et l'algorithme de descente de gradient (la recherche d'un minimum local) est ensuite appliqué à la loss function résultante. En d'autres termes, sur la slide 91, X est un vecteur de vecteurs de dimension m (le nombre de features) x n (le nombre d'éléments par feature) et la loss function résulte du passage de l'ensemble des données dans le réseau. Dans votre représentation, on a l'impression que la descente de gradient est appliquée pour chaque i E [1, m]. J'imagine que c'est pour cette raison que l'apprentissage est très lourd d'un point de vue computationnel car à chaque itération, on effectue des calculs sur l'ensemble des données. Est-ce que cette interprétation est correcte ? Merci d'avance de votre retour.

    • @CNRS-FIDLE
      @CNRS-FIDLE  6 месяцев назад

      Bonjour Eric, désolé de cette réponse tardive...
      L'apprentissage est bien effectué sur l'ensemble du dataset d'apprentissage (une partie des données étant conservée pour la validation).
      Par contre, on va traiter les données par lots (batch), chaque batch sera passé dans le modèle, conduira à une descente de gradient et à une rétropropagation (mise à jour des poids). Le passage de l'ensemble des batchs est appelé une époque et l'on effectuera plusieurs époques.

  • @Art_Photographique_FR
    @Art_Photographique_FR 10 месяцев назад

    J'apprécie l'approche au quel notre manière de traité l'information se formera dans l'avenir de tout à chacun.

  • @CNRS-FIDLE
    @CNRS-FIDLE  Год назад +4

    Pour avoir une vue complète de l'IA aujourd'hui, nous vous renvoyons vers "Artificial Intelligence:
    A Modern Approach, 4th Global ed." (2021)
    aima.cs.berkeley.edu/
    Les chapitres II, III et IV parlent de d'IA qui n'est pas du Machine Learning et les chapitres V et VI parlent de Machine Learning / Deep Learning.
    La Version française du livre est disponible.
    Par contre en nombre de publications le Deep Learning domine très largement aujourd'hui comme indiqué dans notre présentation.

  • @sofrsega
    @sofrsega 7 месяцев назад

    C'est vraiment top!

    • @CNRS-FIDLE
      @CNRS-FIDLE  6 месяцев назад

      Merci beaucoup pour votre retour !

  • @Jujukatrevinkatorze
    @Jujukatrevinkatorze Год назад

    Bravo et merci ! Je découvre Fidl un peu en retard, je vais essayer de rattraper la phase 1 d'ici le démarrage de la phase 2 en janvier !

  • @JudgeFredd
    @JudgeFredd 9 месяцев назад

    Grand merci!

  • @fatmakerouhkerouh379
    @fatmakerouhkerouh379 Год назад +1

    Dans la partie normalisation, vous avez normalisé x_test avec mean et std de x_train ! je peux comprendre pourquoi ? Merci

    • @CNRS-FIDLE
      @CNRS-FIDLE  Год назад +1

      On utilise les mêmes paramètres de "normalisation" pour toutes les données et les données de tests ne doivent pas intervenir dans le processus d'apprentissage. On calcul donc les mean et std sur les seules données connues/utilisables : les données train.

  • @SylvainDeWeerdt
    @SylvainDeWeerdt Год назад

    Bonjour, je n'ai pas trouvé le visa pour l'attestation. Dispo ici ?

    • @CNRS-FIDLE
      @CNRS-FIDLE  11 месяцев назад

      Les attestations de suivi ne peuvent être délivrées que durant les lives...
      Nous ne pouvons pas en établir pour les visionnages en replay.. désolé.

  • @joycearthllan1164
    @joycearthllan1164 Год назад

    ESt-ce qu'on peut tout faire directement sur Jupyter?

    • @CNRS-FIDLE
      @CNRS-FIDLE  Год назад

      Oui, tout à fait. Jupyter lab est juste une interface permettant de travailler avec des notebooks. Lorsque les codes deviennent importants, il est toutefois conseillé de modulariser le code, mais la "glue" peut rester dans des notebooks.

  • @ihabhadjerci5238
    @ihabhadjerci5238 Год назад

    Je ne suis pas Européen puis-je accéder a GENCI ?

    • @CNRS-FIDLE
      @CNRS-FIDLE  Год назад

      Oui, bien sûr, à condition d'être rattaché à un laboratoire ou une entreprise française et sous couvert que votre dossier soit validé :-)