THE COOLEST LOG TRIG INTEGRAL ON YOUTUBE!

Поделиться
HTML-код
  • Опубликовано: 18 янв 2025

Комментарии • 41

  • @SuperSilver316
    @SuperSilver316 6 месяцев назад +38

    Mans trying to win an Oscar right near the end there 😂

    • @maths_505
      @maths_505  6 месяцев назад +6

      😂😂😂

    • @stefanalecu9532
      @stefanalecu9532 6 месяцев назад +2

      We love him for moments like this and more

    • @Aditya_196
      @Aditya_196 6 месяцев назад

      Fr 😂 I was like bro bro the acting is lit fire just say it out

  • @CM63_France
    @CM63_France 6 месяцев назад +5

    Hi,
    "terribly sorry about that" : 1:32 , 6:10 , 11:45 , 12:40 , 14:12 ,
    "ok, cool" : 12:50 .

  • @kingzenoiii
    @kingzenoiii 6 месяцев назад +9

    13:05 EXOTIC FUNCTIONS.... ASSEMBLE!

  • @Calcprof
    @Calcprof 6 месяцев назад +8

    Mathematica does get the integral from 0 to pi/2 of log^2 cos(x) dx = 1/24 \[Pi] (\[Pi]^2+3 Log[4]^2), agreeing with you

  • @dwightswanson3015
    @dwightswanson3015 6 месяцев назад +1

    Truly an absolute banger!

  • @manstuckinabox3679
    @manstuckinabox3679 6 месяцев назад +2

    Ahh... the good ol massacring of integrals that make me wonder if they appear in any real life application. It's been a while since I came here, and so glad it still feels like home.
    always nice to see myself grow more mathematically mature along side your channel, keep it up big G!

  • @MrWael1970
    @MrWael1970 6 месяцев назад

    Very interesting video. Thank you.

  • @night9587
    @night9587 6 месяцев назад

    0:54 En utilisant la methode de feyman on a integral de 0 à π/2 de ln^2(bcosx) en derivant par rapport à b on obtient inegral de 0 à π/2 de 2/b.ln(bcosx) puis on a π/2ln(b)+2/b integral de 0 à π/2 ln(cosx) changement de variable x=π/2-t on integral in(sint) qui donne 2/b×πln2/2 +k en assemblant le tout on a
    π/bln(b) +π/bln2 qui donne π/bln(2b) d'où
    M(b) =π/b×ln(2b) en integrant on a un changement de variable 2b=t la solution de l'integrale est π/2×ln^2(t)+ C en remplaçant t par 2b et b par 1 selon l'integrale originelle on obtient bien π/2×ln^2(2) + C c'est la determination du C qui pose un peu problème voilà.merci

  • @iWilburnYou
    @iWilburnYou 6 месяцев назад

    Love symmetric integrals

  • @dan-florinchereches4892
    @dan-florinchereches4892 Месяц назад

    I would like to try something else but not aure if my level of maths is jigh enough as a humble engineer :)
    I would like to transform 1 into sin(π/2) so
    1+sin(x)=sin(π/2)+sin(x)=2sin(x/2+π/4)cos(π/4-x/2)=(using cos(a)=sin(π/2-a)) 2*cos^2(π/4-x/2)
    1+sin(-x)=2sin(-x/2+π/4)cos(π/4+x/2)= 2 sin^2(π/4-x/2)
    All the reig functions are positive from -π/2 to π/2 so using properties of logs makes sense
    Function=ln(2 cos^2( π/4-x/2))ln(2 sin^2(π/4-x/2))= (ln2)^2+2ln2(ln(cos(π/4-x/2))+ln(sin(π/4-x/2)))+ln(sin^2(π/4-x/2))ln(cos^2(π/4-x/2))=(double angle sine) (ln2)^2+2ln2*ln(sin(π/2-x)/2)+ln(sin^2(...))ln(1-sin^2(...))=ln2+2(ln(cos(x))-ln2)+ln(sin^2(...))ln(1-sin^2(...))
    Feels like i am going in circles as i got a factor similar to what i started with and integrating ln(cos(x)) i am not sure will evaluate nicely with Weierstrass either

  • @mab9316
    @mab9316 6 месяцев назад

    A beauty !

  • @archinsoni1254
    @archinsoni1254 6 месяцев назад

    Is integral 0 to infinity x^(-x) possible ?

    • @Туканчик1337
      @Туканчик1337 6 месяцев назад +1

      Yes, Summ( 1 to inf) n^-n

    • @GeoPeron
      @GeoPeron 6 месяцев назад

      BriTheMathGuy has a video on it, check it out. It's called "The integral of your dreams (or nightmares)" if I'm not mistaken

    • @maths_505
      @maths_505  6 месяцев назад

      @GeoPeron f**k him
      I have a video on it 😎😎 jk check out both videos 😂

    • @GeoPeron
      @GeoPeron 6 месяцев назад

      @@maths_505 You have a bunch of videos on the Gaussian, Fresnel and Dirichlet integrals, leave some to other math youtubers, damnit!

    • @maths_505
      @maths_505  6 месяцев назад +1

      @@GeoPeron hell nah I'm coming for em all!!!

  • @xleph2525
    @xleph2525 6 месяцев назад +3

    Solved the "HW" problem from the last video:
    pi * cosh( sqrt(2) ) / sqrt(2)
    This look alright, boss?

    • @maths_505
      @maths_505  6 месяцев назад +1

      I think you made a mistake somewhere bro

    • @ambiguousheadline8263
      @ambiguousheadline8263 6 месяцев назад +2

      I believe the answer should be pi/(sqrt(2)e^sqrt(2)) if I did everything correct

    • @Tosi31415
      @Tosi31415 6 месяцев назад

      ​@@ambiguousheadline8263you probably forgot to divide by two at the end but it's correct

  • @slavinojunepri7648
    @slavinojunepri7648 6 месяцев назад

    Excellent

  • @chancia8990
    @chancia8990 6 месяцев назад

    dude you're so chaotic xd

  • @robmaddock8531
    @robmaddock8531 6 месяцев назад

    You're awesome

  • @Tosi31415
    @Tosi31415 6 месяцев назад

    solved last video's homework and got I=π/(2sqrt2*e^(sqrt2))

  • @Ayush-yj5qv
    @Ayush-yj5qv 6 месяцев назад

    Thats what i call "AN IIT ADVANCE LEVEL" Question i tried my best couldn't solve fully

    • @sandyjr5225
      @sandyjr5225 6 месяцев назад

      This is beyond JEE Advanced.

    • @Ayush-yj5qv
      @Ayush-yj5qv 6 месяцев назад

      @@sandyjr5225 no this is the 1℅ question in jee advance that no one can solve 🥲

  • @giuseppemalaguti435
    @giuseppemalaguti435 6 месяцев назад

    sinx>cosx....formule di bisezione...4 integrali risolvibili...in verità 3/4 sono semplici,ma int(lncos(x/2)*lnsin(x/2))????

  • @Jalina69
    @Jalina69 6 месяцев назад

    It is very easy! You open a bracket, then you close a bracket 😇

  • @julianwang7987
    @julianwang7987 6 месяцев назад

    You dropped a factor of 1/2 somewhere. The answer should have been pi/2*ln^2(2) - pi^3/12

    • @danielespinosa869
      @danielespinosa869 6 месяцев назад

      I agree

    • @michaelguenther7105
      @michaelguenther7105 6 месяцев назад +1

      At about 1:17 he redefined I to be the integral from -pi/2 to pi/2 instead of from 0 to pi/2 as at the start of the video, so for the redefined I his result is correct.

    • @julianwang7987
      @julianwang7987 6 месяцев назад +2

      @@michaelguenther7105 I think this is a bad practice. Not every viewer just wants to watch the solution right away (or at all). He could have carried a factor of 1/2 through the rest of calculation, like a presenter should do. Dropping constant factors is something I do while calculating for my own private amusement, not when I need to present the result publicly.

  • @Ben-wv7ht
    @Ben-wv7ht 6 месяцев назад +2

    I beg of you , change the bounds to become 0 - pi/3 , this will be MUCH MORE challenge

  • @yoav613
    @yoav613 6 месяцев назад

    👏👏👏

  • @thomasolson7447
    @thomasolson7447 6 месяцев назад

    I don't know what this stuff is. I have grade 12. But I'll give it a go. I have Maple and kind of understand how to use it.
    r[1]=cos(θ) + i*sin(θ)
    r[2]=-cos(θ) + i*sin(θ)
    f:= t -> (r[1]^t - r[2]^t)/(r[1] - r[2])
    g:= t -> r[1]^t + r[2]^t
    int_0^n f(t) d t = ((cos(θ) + i*sin(θ))^n*ln(-cos(θ) +i*sin(θ)) - (-cos(θ) + i*sin(θ))^n*ln(cos(θ) +i*sin(θ)) + ln(cos(θ) + i*sin(θ)) - ln(-cos(θ) +i*sin(θ)))/(2*cos(θ)*ln(cos(θ) +i* sin(θ))*ln(-cos(θ) + i*sin(θ)))
    int_0^n g(t) = ((-cos(θ) +i*sin(θ))^n*ln(cos(θ) + i*sin(θ)) + (cos(θ) + i*sin(θ))^n*ln(-cos(θ) + i*sin(θ)) - ln(cos(θ) +i*sin(θ)) - ln(-cos(θ) + i*sin(θ)))/(ln(-cos(θ) +i* sin(θ))*ln(cos(θ) + i*sin(θ)))
    I graphed some of them. pi/5 looks like a 3-leaf clover. -i/2 is a sink. I suspect integrals are not meant to be used like this.
    *maybe a little bit of a ninja edit
    int_0^n f(t) d t = -(r[2]^n*ln(r[1]) - r[1]^n*ln(r[2]) - ln(r[1]) + ln(r[2]))/((r[1] - r[2])*ln(r[1])*ln(r[2]))
    int_0^n g(t) = (r[2]^n*ln(r[1]) + r[1]^n*ln(r[2]) - ln(r[1]) - ln(r[2]))/(ln(r[2])*ln(r[1]))
    Did I just do a general solution to something in polynomials?