one of the best integrals you'll solve

Поделиться
HTML-код
  • Опубликовано: 22 июн 2024
  • Full solution development for this insane looking integral leading to a beautiful solution. Use of complex analysis with all relevant explanations.
    My complex analysis lectures:
    • Complex Analysis Lectures
    If you like the videos and would like to support the channel:
    / maths505
    You can follow me on Instagram for write ups that come in handy for my videos and DM me in case you need math help:
    maths.505?igshi...
    My LinkedIn:
    / kamaal-mirza-86b380252
    Advanced MathWear:
    my-store-ef6c0f.creator-sprin...

Комментарии • 55

  • @zunaidparker
    @zunaidparker Месяц назад +29

    One of the best integrals we'll watch YOU solve 😉

  • @CM63_France
    @CM63_France Месяц назад +6

    Hi,
    "Terribly sorry about that" : 2:43 , 6:44 , 11:01 ,
    "ok, cool" : 4:51 , 5:00 , 6:00 , 10:32 , 11:05 , 12:08 .

  • @JustSomePersonOnline
    @JustSomePersonOnline Месяц назад +19

    Guys i think he's terribly sorry about that

  • @primenumberbuster404
    @primenumberbuster404 Месяц назад +7

    Hey, we did this in complex Analysis last year!!!! 😮

  • @leroyzack265
    @leroyzack265 Месяц назад +4

    I see everyone proposed so many ways to reach the result but I contour integration remains one of the best tools for solving hard integrals.

    • @maths_505
      @maths_505  Месяц назад +3

      Hard integrals: (exist)
      Contour integration: GO BACK TO THE SHADOWS!
      FLAME OF UDÛN!!!

    • @leroyzack265
      @leroyzack265 Месяц назад +1

      @@maths_505 it simply annihilate that seeming hardness as fire reduces wood to aches.

  • @florianc2598
    @florianc2598 Месяц назад +3

    For the hw I find pi/(sqrt(2)*exp(sqrt(2))

    • @krisbrandenberger544
      @krisbrandenberger544 Месяц назад

      Yes. The process is pretty much the same as in the problem given in the video. Completing the square in the denominator and applying the same u-sub will result in u^2+4.

  • @MikeBlaskiewicz
    @MikeBlaskiewicz Месяц назад

    Ingenious as always!

  • @Sugarman96
    @Sugarman96 Месяц назад +7

    4:21 I feel like I've said this before, but whatever. To me, this just screams Fourier transform. With the cosine, you have the real part of the inverse Fourier transform evaluated at t=1, with the original function being e^-2|t|, with its transform being 4/(w^2+4). By playing with the constants to make it for with the inverse Fourier transform, you get pi/2 time the original function at t=1, which is the result you got to via contouring.

    • @maths_505
      @maths_505  Месяц назад +4

      Like I said .....FOR MINAS TIRITH!!!!

    • @Sugarman96
      @Sugarman96 Месяц назад

      @@maths_505 You get me there

    • @brenobelloc8617
      @brenobelloc8617 Месяц назад

      ​@@maths_505 the greatest reason to solve that.

  • @ben_adel3437
    @ben_adel3437 Месяц назад +1

    After the cos(x)/x^2+4 part i stopped understanding what's happening but someday i do wanna learn about the integral for complex functions

  • @slavinojunepri7648
    @slavinojunepri7648 Месяц назад +1

    Excellent

  • @DD-ce4nd
    @DD-ce4nd Месяц назад

    A nice generalisation is: int_0^infty cos(1-1/x) \(x+1/x)^n dx becomes 2F0( {n/2,1-n/2},{}, -1/4) / (2^n*( n/2-1)!) for n>0 and an even integer. Also, int_0^infty sin(1-1/x) \(x+1/x)^n dx becomes 2F0( {n/2-1/2,3/2-n/2},{}, -1/4) / (2^n*( n/2-1/2)!) for n > 0 and an odd integer. (both equations multiplied by Pi/e^2)

  • @theelk801
    @theelk801 Месяц назад +1

    love me a good contour integral

  • @gregoriuswillson4153
    @gregoriuswillson4153 Месяц назад +1

    Hello sir thank u so much for giving us such a quality content , could u post discussion regarding glasser master theorem i think it will be interesting .Thanks

  • @MrWael1970
    @MrWael1970 Месяц назад

    Thanks for smart tricks for solving such integrals. It should be possible to be solved in real domain rather than contour integration.

  • @balubaluhehe2002
    @balubaluhehe2002 Месяц назад +4

    could you do a video on how and why contour integration and the residue theorem works?

    • @maxvangulik1988
      @maxvangulik1988 Месяц назад

      i would like to see such a video. I'm still unclear on what a laurent series is.

  • @rishabhshah8754
    @rishabhshah8754 Месяц назад +2

    I have been trying to solve int^1_0 ln(1-x)/x dx without using the fact that ζ(2) = π^2/6. Is this possible?

  • @danielespinosa869
    @danielespinosa869 Месяц назад

    Answer 13:21 is pi/((sqrt(2)*e^(sqrt(2)))

  • @Jalina69
    @Jalina69 Месяц назад +1

  • @ahmedlutfi4894
    @ahmedlutfi4894 5 дней назад

    What is the reason behind reversing the integral interval when changing the realm of x 1/x?

  • @boringextrovert6719
    @boringextrovert6719 Месяц назад +4

    How exactly does one choose the contour? Every time I see such integrals, I don’t understand why such a contour is chosen

    • @Khamul7618
      @Khamul7618 Месяц назад +6

      You are free to choose the most convenient one. Usually you choose the contour so that it contains a single pole. And having convenient parametrization is also nice -- arcs are easily parametrized as z=rho e^(i phi) which simplifies estimation of the integral (you want any additional integrals equal zero). In fact, there is no simple answer to your question. You just try one contour and if it doesn't help you evaluate your integral you try another one. The more experience you have, the more often your guesses will be correct. Integrals are always just like this.

    • @yodastar1237
      @yodastar1237 Месяц назад

      Because Contour usually for this case considers the geometry of the integral like in previous problem. So like in this form you see, you will get an answer that involve pi or e or something like that due to the radians and symmetry.

  • @larinzonbruno9126
    @larinzonbruno9126 Месяц назад +1

    Gorgeous way to solve! Hail Kamal, thundermind of Lothlorien!!. Kamal, I think that I noticed in the first transformation from x to 1/x, you have the negative of the limit switch, another from the cos function symmetry, another from the differential element dx, is that correct?

    • @maths_505
      @maths_505  Месяц назад +1

      The cos function is even so we don't get a negative from there my friend.

    • @larinzonbruno9126
      @larinzonbruno9126 Месяц назад

      @@maths_505 thank you! I understood the opposite, my respect! Thundermind of Lothlorien!

  • @appybane8481
    @appybane8481 Месяц назад

    Answer for homework: pi/(2e^sqrt2)

  • @qetzing
    @qetzing Месяц назад +1

    Regarding 0:42, what exactly is the difference between a transformation as shown here and a regular substitution with u?

    • @maths_505
      @maths_505  Месяц назад +3

      No difference whatsoever

  • @abdealrazakmekebret6385
    @abdealrazakmekebret6385 Месяц назад

    Wonderful professor, really wonderful. Please, professor, how can I reach this level of skill? Advise me what i should stady

    • @maths_505
      @maths_505  Месяц назад +1

      Just keep doing math and you'll probably end up better than me

    • @abdealrazakmekebret6385
      @abdealrazakmekebret6385 Месяц назад

      @@maths_505 Thank you sir and thank you for your humility Thank you, I hope that God will guide you to Islam

  • @PritamMondal-ps4cu
    @PritamMondal-ps4cu Месяц назад

    Bro may I know what books do you follow for complex analysis...like intregals including branch cuts and branch points ?

    • @maths_505
      @maths_505  Месяц назад +1

      Complex analysis by gamelin is a classic

    • @PritamMondal-ps4cu
      @PritamMondal-ps4cu Месяц назад

      @@maths_505 thanks for replying

  • @Samir-zb3xk
    @Samir-zb3xk Месяц назад +1

    if im being completely honest i have no clue how to do complex analysis but I got the same result using laplace transform lol

    • @maths_505
      @maths_505  Месяц назад +1

      The Laplace transform is a subject of complex analysis.

    • @Samir-zb3xk
      @Samir-zb3xk Месяц назад

      ​@@maths_505yea i meant the stuff you were doing with poles and contours, i learned laplace transform when studying differential equations

  • @holyshit922
    @holyshit922 Месяц назад

    Two substitutions
    u = 1/x
    and
    v = u-1/u
    gave me integral
    \int_{0}^{\infty}{\frac{cos(v)}{v^2+4}dx}
    which can be calculated fe with Laplace transform
    You did it for integral which looks almost the same
    ruclips.net/video/bmZoPIfZLsw/видео.html

  • @davode76166
    @davode76166 Месяц назад

    Why don't you do double and triple integrals? They are quite interesting!🎉

  • @petterituovinem8412
    @petterituovinem8412 Месяц назад

    29th

  • @giuseppemalaguti435
    @giuseppemalaguti435 Месяц назад

    Fino al 5 Min è semplice...poi non conosco quelle soluzioni..il risultato arriva anche con feyman

  • @maxvangulik1988
    @maxvangulik1988 Месяц назад

    I=int[0,♾️](cos(x-1/x)/(x+1/x)^2)dx
    x-1/x=u
    x+1/x=sqrt(u^2+4)
    x=(u+sqrt(u^2+4))/2
    du=(1+1/x^2)dx=(x+1/x)dx/x
    x->♾️, u->♾️
    x->0, u->-♾️
    I=1/2•int[-♾️,♾️]((u+sqrt(u^2+4))cos(u)/(u^2+4)^(3/2))du
    I1=1/2•int[-♾️,♾️](ucos(u)/(u^2+4)^(3/2))du
    I2=1/2•int[-♾️,♾️](cos(u)/(u^2+4))du
    I=I1+I2
    U=cos(u)
    dV=(u/(u^2+4)^(3/2))du
    dU=-sin(u)
    V=-(u^2+4)^-1/2
    I1=-1/2•int[-♾️,♾️](sin(u)/sqrt(u^2+4))du
    odd•even=odd, so I1=0
    I=I2=1/2•int[-♾️,♾️](cos(u)/(u^2+4))du
    even•even=even, so
    I=int[0,♾️](cos(u)/(u^2+4))du
    b=u/2
    db=du/2
    I=1/2•int[0,♾️](cos(2b)/(b^2+1))db
    cos(x)=sum[n=0,♾️](x^(2n)/(2n)!)
    I=1/2•int[0,♾️](sum[n=0,♾️]((2b)^(2n)/((2n)!(b^2+1))))db
    I=sum[n=0,♾️](2^(2n-1)/(2n)!•int[0,♾️](b^(2n)/(b^2+1))db)
    O=b
    A=1
    H=sqrt(b^2+1)
    tan(Ø)=b
    sec^2(Ø)=1/(b^2+1)
    sec^2(Ø)dØ=db
    I=sum[n=0,♾️](2^(2n-1)/(2n)!•int[0,pi/2](sin^2n(Ø)cos^-(2n+4)(Ø))dØ)
    int[0,pi/2](sin^(2u-1)(x)cos^(2v-1)(x))dx=ẞ(u,v)
    I=sum[n=0,♾️](2^(2n-1)ẞ(n+1/2,n+5/2)/(2n)!)
    ẞ(u,v)=gamma(u)gamma(v)/gamma(u+v)
    ẞ(n+1/2,n+5/2)=gamma(n+1/2)gamma(n+5/2)/gamma(2n+3)
    =(n+3/2)(n+1/2)gamma^2(n+1/2)/gamma(2n+3)
    I=pi/2•sum[n=1,♾️]((2n^2+n)(n-1)!!^2)/((2n)!^2))
    I=pi/2•sum[n=0,♾️]((2n^2+5n+3)n!!^2/(2n+2)!^2)
    im not up to snuff on my double-factorial-squared sums, so I'll just watch the video now

  • @arkadelik
    @arkadelik Месяц назад +1

    real okay cool moment

  • @zunaidparker
    @zunaidparker Месяц назад

    This video has 69 likes at the moment. I'm so conflicted...

  • @mutenfuyael3461
    @mutenfuyael3461 Месяц назад

    Fool of you to think I'll solve this integrale