Nicomachus's theorem | Visualisation | 3-D animation |

Поделиться
HTML-код
  • Опубликовано: 8 ноя 2024

Комментарии • 114

  • @spmanojgowda
    @spmanojgowda 6 лет назад +186

    Came from 3b1b and definitely loving this channel

  • @neslef3
    @neslef3 6 лет назад +32

    your videos are literally some of the most beautiful things I have ever seen.

  • @dcs_0
    @dcs_0 6 лет назад +8

    3b1b viewer here. This video is awesome!
    If anyone wants a more mathematical proof, here it is (by induction):
    Firstly, check a base case (n = 1) 1^2 = 1^3, so the base case works
    Next, choose some case (n = k). By the inductive hypothesis, (1 + 2 + 3 + ... + k)^2 = 1^3 + 2^3 + 3^3 + ... + k^3
    let x = (1 + 2 + 3 + ... + k) for simplicity. Note that also, by the triangle-number formula, x = k(k + 1)/2
    So x^2 = 1^3 + 2^3 + 3^3 + ... + k^3
    Lets check if it works for n = k + 1
    (x + (k + 1))^2 is the new expression on the left hand side, expanding out, we get
    x^2 + 2x(k + 1) + (k + 1)^2 = x^2 + 2kx + 2x + k^2 + 2k + 1
    substituting for x (leaving the x^2), we get:
    x^2 + 2k*(k(k + 1)/2) + 2*(k(k + 1)/2) + k^2 + 2k + 1
    simplify (cancel out 2s):
    x^2 + k*k*(k + 1) + k * (k + 1) + k^2 + 2k + 1
    x^2 + k^3 + k^2 + k^2 + k + k^2 + 2k + 1
    collect like terms:
    x^2 + k^3 + 3k^2 + 3k + 1
    factorise:
    x^2 + (k + 1)^3
    note that by the inductive hypothesis, x^2 = 1^3 + 2^3 + 3^3 + ... + k^3
    so:
    x^2 + (k + 1)^3 = 1^3 + 2^3 + 3^3 + ... + k^3 + (k + 1)^3
    This is the sum of the first k + 1 cubes, so, by induction, if it works for k, it works for k + 1
    However, we know it works for k = 1 (base case), so it must work for all natural numbers
    Ta da! :D
    P.S. Please provide critical feedback on this proof presentation if you have time! I'm practicing for the Olympiad! Thanks in advance!
    Edit: Oh, and happy tau day! :D

  • @jameswise9171
    @jameswise9171 7 лет назад +57

    So the sum of the first n integers all squared is equal to the sum of the first n cube numbers... I love you.

  • @GordonHugenay
    @GordonHugenay 6 лет назад +83

    why haven't I heard of this before? it's awesome

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  6 лет назад +8

      :)

    • @nischay4760
      @nischay4760 6 лет назад

      Yusril Atfan he’s talking about this equation

    • @sunyuchen4562
      @sunyuchen4562 4 года назад

      It must begin from 1, and must be continuous.

  • @vpambs1pt
    @vpambs1pt 7 лет назад +57

    Awesome, I'm loving this channel!

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  7 лет назад +5

      Nuno Mateus comments like that make me want to make more videos:)

    • @vpambs1pt
      @vpambs1pt 7 лет назад +2

      And people like me want you to make more videos!!!

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  7 лет назад +2

      Nuno Mateus I'll upload as soon as i can, however I have to work a lot these days, so I might upload at slower rate.

    • @kavitajuneja9800
      @kavitajuneja9800 6 лет назад +1

      Think Twice now worry just keep up the great quality :) very good work.

    • @kavitajuneja9800
      @kavitajuneja9800 6 лет назад +1

      *No worry

  • @avimittal4748
    @avimittal4748 6 лет назад +2

    As soon as it hit 1:01, I had to pause, lean back in my chair, and verify the absolute brilliance I just saw.

  • @stevemallot721
    @stevemallot721 6 лет назад +15

    The way you 'explain' this using geometry is simply beautiful. If you had shown that equality up front, I would have waited for the punchline. Aside from what you showed, is there some other way to come to this conclusion intuitively? In any case, you got another fan.

  • @brutexx2
    @brutexx2 6 лет назад +2

    Your content keeps helping everyone, I just love that

  • @santiagopalumbo6453
    @santiagopalumbo6453 7 лет назад +17

    Awesome

  • @MamoonSyed
    @MamoonSyed 6 лет назад +1

    The RUclips algorithms seem to be favoring this channel as of late. Good to hear.

  • @funkysagancat3295
    @funkysagancat3295 6 лет назад +5

    Thank you, reaaaaally thank you!!! That's beautifull

  • @davidbluecame
    @davidbluecame 6 лет назад +2

    Excellent video, very well and nicely done, love the music as well. Thank you!

  • @TheVietcutun
    @TheVietcutun 6 лет назад +3

    oh my god
    everything in math being so different since i see this channel
    oh...my...god
    how couldnt i seen thí channel before?

  • @sealee2451
    @sealee2451 6 лет назад

    I'm so glad I've found this channel. God bless you guys! >

  • @LeoStaley
    @LeoStaley 6 лет назад +2

    This is one of the most beautiful theorem's i have ever seen. why am i only now learning of it?

  • @jach8952
    @jach8952 6 лет назад +2

    Beautiful explanation !!!

  • @JarreDroid
    @JarreDroid 5 лет назад

    I've been looking for a long time to find a video like this. This proof is so unknown I thought it didn't exist at all for years.

  • @kaustubha7371
    @kaustubha7371 6 лет назад +4

    I found maths distasteful last year but this year after reading Alex's Adventure in the numberland I feel like I have some connection with it. No one cares anyway still solving a math problem was boaring for me but after watching videos from channel's like mathologer,3blue1brown,Thinktwice and my favoutlrite Numberphile kept me motivated and insightful.

  • @albertrenshaw4252
    @albertrenshaw4252 6 лет назад +6

    Another cool one: The sum of the first n odd numbers is n^2

  • @kennethx7801
    @kennethx7801 3 года назад

    This is really nice! I always wondered if there was a visual way of understanding this formula :)

  • @estuardodiaz2720
    @estuardodiaz2720 7 лет назад +5

    This is sooo cool!!!

  • @rasoulkhoshravan5912
    @rasoulkhoshravan5912 4 года назад

    Very nice. With these videos, education of mathematics is far more fun and enjoyable

  • @madhavanand756
    @madhavanand756 5 лет назад +2

    Wonderful

  • @francotomatillo
    @francotomatillo 6 лет назад

    Excellent channel! Your visualizations are great!

  • @marco.nascimento
    @marco.nascimento 5 лет назад +1

    Came from 3b1b, awesome channel!!

  • @MrCubFan415
    @MrCubFan415 6 лет назад

    I actually figured this fact out myself in junior high. Cool to see a video on it!

  • @가시
    @가시 6 лет назад

    I can't know why this channel has only 35 thousands of subscribers.

  • @omri9325
    @omri9325 6 лет назад

    This one gave me the chills

  • @microhoarray
    @microhoarray 2 года назад

    That’s beautiful

  • @tulibose6974
    @tulibose6974 5 лет назад

    I love your process of intuition sir thanks a lot

  • @gikasmith5511
    @gikasmith5511 4 года назад

    The beauty of Math in full display!

  • @SartajKhan-jg3nz
    @SartajKhan-jg3nz 5 лет назад

    Beautiful!

  • @SSJProgramming
    @SSJProgramming 6 лет назад +9

    Subbed for sorcery

  • @kurumehmetefendi
    @kurumehmetefendi 3 года назад

    Awesome 👍

  • @amirmaths3793
    @amirmaths3793 Год назад

    Excellent 💕

  • @bhavyajainnd
    @bhavyajainnd 6 лет назад

    holy hell I didn't expect this (never heard of the theorem and when it came I was surprised)

  • @ashleylee217
    @ashleylee217 7 лет назад +13

    unbelievable

  • @jakethesteak839
    @jakethesteak839 5 лет назад

    AMAZING

  • @andyandrw
    @andyandrw 4 года назад +1

    Love your animations!
    BTW: Song ?

  • @DamaKubu
    @DamaKubu 5 лет назад

    it's sooooooooooooo beatifufllll

  • @elnotacom
    @elnotacom 5 лет назад

    Brillante

  • @engestruturas
    @engestruturas 5 лет назад

    Thank you

  • @jlpsinde
    @jlpsinde 5 лет назад

    I now support on Patreon 3blue1brown, Veritasium, Eugene Khutoryansky, the Science Asylum and you!
    Your videos are awesome! You deserve more support.
    How old are you?

  • @TylerMatthewHarris
    @TylerMatthewHarris 7 лет назад +2

    Wow

  • @joshuaperling2985
    @joshuaperling2985 3 года назад

    mind explosion!

  • @msazrapkin
    @msazrapkin 5 месяцев назад

    Лектор доказал эту теорему на занятии по математическому анализу, но не назвал её. Спасибо!

  • @virginiagarridogenestaseco9706
    @virginiagarridogenestaseco9706 5 лет назад +2

    100
    1+2+3+4=10
    (Inspired by numberblocks)
    10²=100

  • @schoolofmathindonesia8592
    @schoolofmathindonesia8592 6 лет назад

    Excellent. It's so satisfying... I'll recommend this channel for all my math's friend. Btw, what software do you use to make this animation?. Please 😊

  • @backyard282
    @backyard282 5 лет назад

    Great video! Just one tiny error. In the last sigma notation, you should've replaced the places for k and n. Because above you represented the sum from 1 to n, not from 1 to k.

  • @raph2550
    @raph2550 4 года назад

    I didn't even know this formula =O

  • @Jop_pop
    @Jop_pop 6 лет назад

    Woah

  • @maurocruz1824
    @maurocruz1824 6 лет назад

    Wow.

  • @marcfbartolabac
    @marcfbartolabac 6 лет назад

    Your goal of getting 1M subs gets closer with 3b1b.

  • @OdysseyWorks
    @OdysseyWorks 6 лет назад +5

    What is the music?

  • @FlyingOctopus0
    @FlyingOctopus0 6 лет назад

    I think it would nicer if for cases like 2^3 and 4^3(top layer comes from both sides), the one side was rotated and then moved, instead of shuffling cubes like you did.

  • @soranuareane
    @soranuareane 6 лет назад

    Holy--

  • @cheeseburgermonkey7104
    @cheeseburgermonkey7104 5 лет назад

    i luv vids

  • @jack_papel
    @jack_papel 4 года назад

    Wow I really wanna see the proof for this

  • @rpyrat
    @rpyrat 6 лет назад +4

    3blue1brown brought me here. You got one more sub now!

  • @drsuper8180
    @drsuper8180 4 года назад

    Beautiful, I had just done this with a set of original Dienes wooden blocks and was making a Scratch version. Your animation is great. Do you know of a visual proof for the sum of powers of 4?

  • @theimmux3034
    @theimmux3034 3 года назад

    This really be called a theorem after someone when you can literally look at the formulae for the sums of first n natural numbers and n first cubes.

  • @Minecraftster148790
    @Minecraftster148790 6 лет назад

    When I first found the sum of cubes formula, I realised it was the square of the sum of naturals, so I went into wolfram alpha to see if any other sum of power formulas where the same as other sum of power formulas raised to a power, but I couldn’t find any. Pretty disappointing. I would have loved it if the sum of power 5s was the sum of naturals cubed

  • @scmtuk3662
    @scmtuk3662 5 месяцев назад

    Are there any other examples of this where the sum of powers, is equal to another power of sums?
    I.e. where the 1^a + 2^a + 3^a + ... + n^a = (1 + 2 + 3 + ... + n)^b?

  • @anilagarwal4983
    @anilagarwal4983 4 года назад

    Bruhhhhhhh!

  • @thedocta_certified
    @thedocta_certified 5 лет назад +2

    I dont see how i can visualize the general case from this.

  • @numumono
    @numumono 2 года назад

    Can anyone please tell me the title of the background music?

  • @AlrycaAeveaHexendias
    @AlrycaAeveaHexendias 6 лет назад

    Can this be applied to higher exponents?

    • @ilprincipe8094
      @ilprincipe8094 6 лет назад

      John Apawan i dont think so, since you cant make "nice" quadratic patterns for example 1^4+2^4= 17 and the square root of 17 isnt that nice

  • @johnk3903
    @johnk3903 6 лет назад

    yeah, but isn't ONE square missing from every next square?

  • @mattgsm
    @mattgsm 6 лет назад

    What's the sum of 1³+2³+3³+...+n³ though? Is it n⁴?

    • @ilprincipe8094
      @ilprincipe8094 6 лет назад

      Matt GSM no 1^3+2^3 = 9 and 2^4= 16

    • @mattgsm
      @mattgsm 6 лет назад

      ilPrincipe so what is it then?

    • @ilprincipe8094
      @ilprincipe8094 6 лет назад

      Matt GSM watch the video xD

  • @karthikrambhatla7465
    @karthikrambhatla7465 6 лет назад

    wow.. how to. Make these visuals

  • @JustAgreenBoy6969
    @JustAgreenBoy6969 2 года назад

    nice try dude.
    why i'm saying this simply because 1^3+2^3+...+n^3 = (n(n+1)/2)^2 which is sum of natural numbers who square

  • @Untoldanimations
    @Untoldanimations 5 лет назад

    How do you know that each colour will perfectly make up a cube every time? You didn't show that part

    • @jeremy3046
      @jeremy3046 5 лет назад

      They were arranged into n groups of nxn, for instance the 4s were arranged into 4 blocks of 4x4 (one of which was cut in half).

  • @TSBoncompte
    @TSBoncompte 6 лет назад

    but... but how... and why... and... AAAAAAAAAAAA

  • @ThorsHammer1
    @ThorsHammer1 5 лет назад

    Nice, but doesn't work where n > 4. Seems too trivial to be a theorem.

    • @trangium
      @trangium 5 лет назад

      Thor's Hammer it works for n=5, and all other n

  • @oliot4814
    @oliot4814 7 лет назад

    What about the rasengan doe

  • @khirgis7224
    @khirgis7224 2 года назад

    2

  • @RobotProctor
    @RobotProctor 5 лет назад

    But why?

  • @SathvickSatish
    @SathvickSatish 5 лет назад

    Why haven’t I seen this equation before?? I’m sad I’ve missed such a beautiful equation. This is why i love math everything is somehow interconnected though it wasn’t mean to be when math was invented

  • @zakariaelyamousse5105
    @zakariaelyamousse5105 3 года назад

    I dont inderstand why earea of square transform to cube i dont agree hhhh

  • @antimatter2376
    @antimatter2376 5 лет назад

    1.1k likes : 4 dislikes. Wow

  • @sethdon1100
    @sethdon1100 5 лет назад

    I knew this when I was 8, or 9

  • @NortheastGamer
    @NortheastGamer 3 года назад

    Probably the least interesting think twice video I've watched.