Размер видео: 1280 X 720853 X 480640 X 360
Показать панель управления
Автовоспроизведение
Автоповтор
ついに証明されましたねこの凄さを理解したい
0:00 第1章 導入3:40 第2章 素因数分解とrad(n)9:28 第3章 abc-tripleとabc-hit 9:38 「互いに素」の復習 12:19 abc-triple 22:01 abc-hit31:05 第4章 フェルマーの最終定理 33:43 ABC'予想 35:39 フェルマーの最終定理
この動画を見ている方へ。まずabc予想は査読を通過しましたが、世界的にあまり認められておらず、実際に欠陥が見つかりました(修正済み、結果に影響はないと望月さんは説明していました。)n=3.4.5の時の照明については、それぞれ1本の動画になるほどなので、自分で探してみることをおすすめします。この動画はクラスでちょっと頭がいいレベルで十分理解できるのに加え、本来とても難解なフェルマーの最終定理に触れられるということでとても素晴らしいものだと思います!とても面白かったです!
35:00あたりからABC予想が正しいときの話
ここで使われているのはABC'予想であって望月先生が証明したABC予想とは違うものですね
@@kuro-bumu 強いABC予想とか言われるやつやね
@@jalmar40298 そうそう
a
ときどき「小学校で習った通り、」って言う冗談混ぜるの面白いわw
ABC予想が真であるならば、フェルマーの最終定理がABC予想で証明できるとは面白いです。数学者望月新一氏の論文に期待したいです。
望月教授おめでとうございます。しかし、望月教授の証明したABC予想は所謂弱い方のABC予想というものでありまして、それだけでフェルマーの最終定理が証明されるものではありません。ですが、これからの数学界に多大なる貢献をされたことに間違いはありませんよね。
非常にわかりやすい解説です。老人にもわかります。
タイトルが「ABC」じゃなくて「ABC'」になってるの好き
すげえ分かり易かったっすありがとうございます😊
めっちゃ丁寧でわかりやすい
フェルマー本当は分からなかった説
見栄っ張りっていうか勘違いだったんだと思う。n=4はフェルマーさんの得意な無限降下法で簡単に証明出来るから、それがどんな3以上のnでも使えると勘違いしたってのが有力。
@@Akabane-ue7wv うーん、確かにそうなんですが、フェルマーさんが生きてた時代は17世紀で、その頃はあんまり証明は重要視されてなかったのではないでしょうか?公理とかきちんと整理されたのって19世紀ですし、それより前の数学はほとんどイメージや発想の方が強かったと思います。オイラーさんだって証明は結構杜撰だった気がします。
@@Akabane-ue7wv フェルマーが反面教師ってあなた天才過ぎませんか
Itoho 421 お前にフェルマーの何がわかるんだw
Itoho 421 いまでこそこの動画でいうABC予想とか色々な証明があるけど17世紀だからな、あとフェルマーの名がつく証明や定理は今現在数多くあるフェルマーの最終定理やフェルマーの小定理など特に高校や大学になればフェルマーの小定理は使う機会が多くなると思うぞn^r-1≡1(modr)(r=素数.rとnは互いに素)とか神
面白い。一応最後まで見ました。気分が良いね。さて、何を感じるべきか、ヒントが愉快だった。
全然違う数論からフェルマーの最終定理も証明された。そしてABC予想も全然違う予想から道を作りフェルマーの最終定理を証明。数学はすごいです
証明した人が凄いだけ。数学を学んでるだけじゃ凄くはなれません。
数学がすごいんでしょ
zainichi nihonjin 何言ってんの?数学を学ぶから凄くなれんだろ。
学者は、数学というフィールドの中で、新しい理論や発見を生み出すから、凄くなれるんだよ。先人が作り出した理論を、後から学ぶだけじゃ、ただ他人の知恵を借りている状態。PCやスマホにアプリをインストールするのと一緒。優秀なソフトをインストールしたからといって、パソコンの性能が向上するわけじゃないでしょ?それと同じように、勉強しただけで賢くなった気になってるのは、ただの錯覚なんだよ。重要なのは、インストールした知識を使って、どういう成果をあげるか、だから。
zainichi nihonjin インストールした知識が優秀か否かは大きな問題でしょ。知識をどう成果につなげるかは大事だけど、それが数学がすごいってことを否定する材料にはならんよ。
おい!最後!!先人達の力ってw
ほんまわかりやすい
今回の望月教授が証明されたのは弱いABC予想を証明したそうで、本来のABC予想はまだらしい。強い弱いがよく分からないから誰か教えて欲しい。
今回の証明はこんな感じです「自然数(a,b,c)がabc-tripleの時、c>{rad(abc)}^1+ε (ε>0)を満たすcは有限個しかない」これの累乗の部分がεという0より大きい任意の実数であるところが弱いと言われる所以ですかね。簡単に言えば右辺が大きくなりやすいように贔屓してる感じです。
@@天照大神-g7c おーすっきり、理解できました!ありがとうございます!
天照大神 twitter.com/tsujimotter/status/1246052179720298498?s=21これによると、εがないと簡単に反例見つかるみたいだけど、どっちが正しいんや?
てすてす ごめんなさい。「どっちが正しい」の意味がよくわからないのでもうちょい詳しくお願いします...
天照大神 εがあるから弱いabc予想と言われてるってことなら、強いabc予想っていうのは「互いに素な自然数a,b,cについて、a+b=cが成り立つとき、c>rad(abc)をみたすcは有限個しかない」のことを指しているのだと天照大神さんが言っているのかと思いました(この解釈が間違ってたらごめんなさい)だとするならリンクの記事で真っ向から否定されてるので、「どっちが正しいのか」という発言に至りました。的外れなこと言ってたら申し訳ないです……。
すがくてたのちい さん丁寧な解説をありがとう。北村某は 予想と証明の区別もつかぬ 暴論妄論者ですが いちいち付き合っている皆さんの根気に感心しました。脱帽。
35:50 直角三角形の辺についてこの式が成立することが三平方の定理であるのだから、「三平方の定理より3^2+4^2=5^2や5^2+12^2=13^2が成り立つ」というのは問題があるんじゃない?
「2つの自然数の平方の和がある自然数の平方になる」を聞いた時に多くの人が思い浮かぶのが三平方の定理であり、その中でも3:4:5や5:12:13などの簡単な整数の比で表せる特徴的な三角形も覚えている人が多いと投稿主が判断したんだと思います。
感動しました、こういう懇切丁寧な動画を待っていました。先人の知恵も知っていたので大変分かり易かったです、ありがとうございました。
強いABC予想が証明されるとフェルマーの最終定理が証明されることがわかりました。おもしろかったです。
xyz
ロクドー わかる
ロクドー 分かるw
ついにABC予想が証明されましたね
伊藤誠 秀逸
Arthur Euripedes Lelouch-Watson 証明されましたね!
@@高山むなみ 笑笑
伊藤誠 うますぎる
CM面白いですね
マルキヨ製菓バンザイ\(^^)/
2020/04/04 証明されましたほんとに凄いこと。
2012で出来てて、査読が2020に済んだってだけだから、実質2012には済んでたのでは…
@@user-pb3nv3ic6t それは結果論じゃないですか?
背理法いいっすねぇ~ 整数問題で使うことありありやしおもしれ~~
フェルマー最終定理のnが6以上の場合が長い間証明されなかったことと、強いABC予想が証明されていないことに関連性ってあるんですかね。
37:48 x'とy'は互いに素であるとは限らないのでは?(x'=y'=1の可能性)
1と1は公約数1しかないから互いに素では?
果汁 ありがとうございます。勉強になりました。
CM入るの草
将来的にはリーマン予想のゼータ関数も、(47:13みたく)6番目よりも手前のゼロ点が全て1/2の直線上に並んでいたら、その先はどんなに無限大まで伸ばしても、永久に同じ直線上にしか並ばないよ!みたいなところまで到達するんかな??(?_?)
本日証明されたので見に来ました。
同じく
望月先生すごい
8年前です
ゆかり 8年前時点では"証明された"と認められてないよ。8年かけて望月先生の論文が正しいのか精査したんだよ。
42:20 はいてますよ
これは、いい動画
数学は比較的得意だけれど、微積に線形代数ばかりで整数論とかは一切やってなかったです。そんな自分ですが、流してみて一発で理解できるレベルでした。ステキ♡
44:00からのスライドでrad(x^n y^n z^n)=rad(xyz)の理由が分かりません。お教えください!
Takahito Sugiyama 動画にある【素因数分解とrad(n)】をご覧になればわかると思います
前半見ました?radについて解説ありますよ
数学は本当に面白いですね。
ずっと知りたかった
12:09 18と2の最大公約数はになってますよ
一ページで証明したといえばいえるが、 先人たちの知恵より・・ のため、結構ページ数あるかも。でも楕円曲線をつかうあのやり方より 直接的で早いような。
第2部どこ?
ついに!
最後の説明ないきなり雑で笑った
対偶を取ればフェルマーの最終定理の反例見つけたらABC予想が成り立たなくなるんかな
もしABC予想からフェルマーの最終定理が導かるとするなら、確かにフェルマーの最終定理の反例を見つければABC予想も成り立たないことが証明出来ます。しかしフェルマーの最終定理はワイルズ教授がABC予想とは別で証明しているので反例はないです。証明に不備がない限り絶対に見つかりません。
もし反例なんて見つかったら数学会が数百年分ひっくり返るぞフェルマーの証明には色んな分野絡んでるから
1ページあたりの記述量がわからないからな
rad(abc)=Cになる場合はないのでしょうか?
結論から言うとないです。理由はa,bは互いに素なので片方が偶数の時(パターン1)はcは奇数となり、両方が奇数の時(パターン2)はcは偶数となるのでradで素因数どうしの計算をするとパターン1の時は答えが絶対偶数になりパターン2の時は絶対答えが奇数になるので=で結ばれることはありません。今更の返信ですみません。
これもしかしたら大学入試でこれを用いて「フェルマーの最終定理を証明せよ」ってでるかもな
そんなん出たら数学オタク全員興奮する
CM怖い
もう一個の途轍もなく厄介な「リーマン予想」も解決間近になりそう?あれは素粒子物理学と関係してるとか・・・。
すみません~。背理法をどこでつかったかわからなくて困ってます。矛盾って言葉が出てこなくて。凄いいい動画ですごいわかりやすかったのですが、ABC’は仮定の矛盾ではないですよね?最初にでたg’は何回も見てやっとこ自然数すべてに拡張させるためだと分かったのですが、文系なんでわかりやすくてほんといい動画。すごい。続編待ってます。
すみません。最後勘違いしてました。お恥ずかしい。
第二部どこだろう
abc-triple(a²,b²,c²)は存在するのだろうか
よく見たらただの原始ピタゴラス数の二乗じゃないか()
47:40 これを証明出来なきゃ試験では対応できないじゃないか
ゆっくりが本当にゆっくりCMが長いこの動画は10分にまとめられるくらいの内容しか保持していない
これは批判ではなくて、中学1年生に理解させるには十分すぎる内容だし、一回の授業で解説するには十分にゆっくり(優しく)解説している、という意味
ABC予想証明されたぞ!!!
すみません。わかりました。最後勘違いしておりました。すごい証明!
なぜ途中からABC予想にダッシュがついているのですか?あと、x,yが互いに素である場合は?
x,yが互いに素じゃなくても最大公約数gがx,y,zに含まれるから両辺をgで割って互いに素の状態にもってけます
横内奎吾 横内奎吾 ABC予想は「a+b=cを満たす互いに素なa,b,cの組(a,b,c)に対し、積abcの互いに異なる素因数の積をdと表す。この時、∀ε>0,c>d^(1+ε)を満たす組(a,b,c)は高々有限個だろう。(d=rad(abc)。」っていう予想ですが、フェルマーの最終定理を証明するときはc
これって、証明なのか??
望月スゲ
すげーよ
なんか最後腑に落ちんなぁ
x,y,zともに0は?
工場食パン x,y,zは自然数の組がないということを証明しているので0は当てはまりません
面白すぎる
途中から頭痛くなってきた
先人は偉大
Nobel 賞だ!素晴らしい!天才ですね!
JJ Crescent うっせぇボケ‼️
数学にノーベル賞はありません。
フィールズ賞っすね
素因数分解を小学校で習ってないんですけど...
以上です。
カーナビの声
谷山・志村予想とは関係がないんですね。
そりゃ、「正しいであろう予想」を成り立つものとするなら簡単に証明できるわな。それならフェルマーの最終定理も成り立つものとする、って言ってるのと大差ないで。その過程にある一つ一つを証明することが大変なのにすっ飛ばしすぎやわ。
水原 まぁ、そもそもフェルマーの最終定理を高校数学で証明する。の時点でめちゃくちゃなんだけどね。僕は理学部で趣味でワイルズ氏の論文を見してもらったことがあるけど指一本触れることが出来なかった覚えがある。
スキップボタン探してしまった
すげーな
n=2の時、三平方の定理で証明できるから3以上の整数の場合のみ?
んんんうったん 常識の範囲内
何をいまさら
シビュラシステムが解説してそう(小並感)
1995年にフェルマーの定理が証明されたんだから、逆説的にABC予想も証明されたようなもんじゃないんか?
無能
今更ではあるけどABC予想が正しいことはフェルマーの最終定理が正しいための十分条件なのだと思われ(逆は成り立たないかと)
USJにいるには大阪に居ないといけないけど、大阪にいるのにUSJにいる必要はないやろ?
ほんでabc'予想は正しいんか?
正しいことが望月教授によって証明されました
ちょかくせきしば それって直接論文見ないとわかんない感じですよね
どっかに論文あるのかな...
今日完全に証明された
めちゃめちゃ難解かつ600ページくらいあるらしいけど
ABC予想証明記念
動画に広告組み込まれてて笑ったw
43.29
ABC予想Q.E.D記念
えーと良くわからないんだけど、「ABC’予想」ということは「予想」なので証明されていない、つまり定理じゃないということだよね。定理じゃない予想を使って、他の定理を証明できるのかい?証明したことにならんんでしょ。
高2やけど理解できん
同じく高2ですが同じくわかりません。
@@ku1632 良かった
逆にこれで全部分かるって人がいるのかが気になりますね。
これなら小学生でも理解出来ますね。
数学あんまり勉強してこなかった人はきついこと言うけどわからんよね。数学って論理、本質を見抜く、組み立てる力を養うから学校教育で教わってるのであって。それに、何に役に立つ?って、そんなんわからんで当たり前やからなあ。意義を見つけにかなきゃ。証明した人が〜とか、こんなんできて何になる〜って考えてらっしゃる方は少し可哀想だと思った。申し訳ない。
素因数分解は小学校では習わないぞ。
ならうでしょ
@@SABUSUKU54KUDASAI 何年生だよ?!
ABC予想証明出来たらしいから来た
自然数の組割和算
素因数分解はちゅ学生
小学校では習わないって
中学校、高校の数学の勉強を頑張ってください。きっと理解できるようになります
うちはならったわ
ひじき 知るかwwww
余白が狭すぎる←無能
定理に変わったね
ただの背理法で草
フェルマーの最終定理が大学受験レベルまで落ちてるやん来年から出るから受験生が勉強しとけ
ytr _ もちろんx^n+y^n=z^n(n=3.4.5)のとき成り立たないのは自力で証明ですね!回答欄に先人の知恵を借りたとは書けないのでw
メイプル 最悪それでいくわ
てんてけてん
何言ってんのお前
うるせえ
ヌベスコの森 一人で喋ってて悲しくないの?
ヌベスコの森 クソワロタ
ちょ、何?この数学ばっか出てくる動画は?ウチィわぁ、沖縄お菓子のぉ、やつをぉ見に来たんだけどぉ!(怒) マジぃふざけないで!数学のCM長すぎぃ!(怒)
ネタなの?普通に勉強動画じゃない?分からんけど。
ぴーとぅー
えぬじょーえぬじょーあしたのじょー
CM邪魔すぎ。
ついに証明されましたね
この凄さを理解したい
0:00 第1章 導入
3:40 第2章 素因数分解とrad(n)
9:28 第3章 abc-tripleとabc-hit
9:38 「互いに素」の復習
12:19 abc-triple
22:01 abc-hit
31:05 第4章 フェルマーの最終定理
33:43 ABC'予想
35:39 フェルマーの最終定理
この動画を見ている方へ。
まずabc予想は査読を通過しましたが、世界的にあまり認められておらず、実際に欠陥が見つかりました(修正済み、結果に影響はないと望月さんは説明していました。)
n=3.4.5の時の照明については、それぞれ1本の動画になるほどなので、自分で探してみることをおすすめします。
この動画はクラスでちょっと頭がいいレベルで十分理解できるのに加え、本来とても難解なフェルマーの最終定理に触れられるということでとても素晴らしいものだと思います!
とても面白かったです!
35:00あたりからABC予想が正しいときの話
ここで使われているのはABC'予想であって望月先生が証明したABC予想とは違うものですね
@@kuro-bumu 強いABC予想とか言われるやつやね
@@jalmar40298 そうそう
a
ときどき「小学校で習った通り、」って言う冗談混ぜるの面白いわw
ABC予想が真であるならば、フェルマーの最終定理がABC予想で証明できるとは面白いです。数学者望月新一氏の論文に期待したいです。
望月教授おめでとうございます。しかし、望月教授の証明したABC予想は所謂弱い方のABC予想というものでありまして、それだけでフェルマーの最終定理が証明されるものではありません。ですが、これからの数学界に多大なる貢献をされたことに間違いはありませんよね。
非常にわかりやすい解説です。老人にもわかります。
タイトルが「ABC」じゃなくて「ABC'」になってるの好き
すげえ分かり易かったっす
ありがとうございます😊
めっちゃ丁寧でわかりやすい
フェルマー本当は分からなかった説
見栄っ張りっていうか勘違いだったんだと思う。n=4はフェルマーさんの得意な無限降下法で簡単に証明出来るから、それがどんな3以上のnでも使えると勘違いしたってのが有力。
@@Akabane-ue7wv うーん、確かにそうなんですが、フェルマーさんが生きてた時代は17世紀で、その頃はあんまり証明は重要視されてなかったのではないでしょうか?公理とかきちんと整理されたのって19世紀ですし、それより前の数学はほとんどイメージや発想の方が強かったと思います。オイラーさんだって証明は結構杜撰だった気がします。
@@Akabane-ue7wv フェルマーが反面教師ってあなた天才過ぎませんか
Itoho 421 お前にフェルマーの何がわかるんだw
Itoho 421 いまでこそこの動画でいうABC予想とか色々な証明があるけど17世紀だからな、あとフェルマーの名がつく証明や定理は今現在数多くあるフェルマーの最終定理やフェルマーの小定理など特に高校や大学になればフェルマーの小定理は使う機会が多くなると思うぞ
n^r-1≡1(modr)(r=素数.rとnは互いに素)とか神
面白い。一応最後まで見ました。気分が良いね。さて、何を感じるべきか、ヒントが愉快だった。
全然違う数論からフェルマーの最終定理も証明された。そしてABC予想も全然違う予想から道を作りフェルマーの最終定理を証明。数学はすごいです
証明した人が凄いだけ。
数学を学んでるだけじゃ凄くはなれません。
数学がすごいんでしょ
zainichi nihonjin 何言ってんの?数学を学ぶから凄くなれんだろ。
学者は、数学というフィールドの中で、新しい理論や発見を生み出すから、凄くなれるんだよ。
先人が作り出した理論を、後から学ぶだけじゃ、ただ他人の知恵を借りている状態。
PCやスマホにアプリをインストールするのと一緒。
優秀なソフトをインストールしたからといって、パソコンの性能が向上するわけじゃないでしょ?
それと同じように、勉強しただけで賢くなった気になってるのは、ただの錯覚なんだよ。
重要なのは、インストールした知識を使って、どういう成果をあげるか、だから。
zainichi nihonjin インストールした知識が優秀か否かは大きな問題でしょ。知識をどう成果につなげるかは大事だけど、それが数学がすごいってことを否定する材料にはならんよ。
おい!最後!!先人達の力ってw
ほんまわかりやすい
今回の望月教授が証明されたのは弱いABC予想を証明したそうで、本来のABC予想はまだらしい。
強い弱いがよく分からないから誰か教えて欲しい。
今回の証明はこんな感じです
「自然数(a,b,c)がabc-tripleの時、
c>{rad(abc)}^1+ε (ε>0)
を満たすcは有限個しかない」
これの累乗の部分がεという0より大きい任意の実数であるところが弱いと言われる所以ですかね。
簡単に言えば右辺が大きくなりやすいように贔屓してる感じです。
@@天照大神-g7c おーすっきり、理解できました!
ありがとうございます!
天照大神 twitter.com/tsujimotter/status/1246052179720298498?s=21
これによると、εがないと簡単に反例見つかるみたいだけど、どっちが正しいんや?
てすてす ごめんなさい。「どっちが正しい」の意味がよくわからないのでもうちょい詳しくお願いします...
天照大神 εがあるから弱いabc予想と言われてるってことなら、強いabc予想っていうのは
「互いに素な自然数a,b,cについて、a+b=cが成り立つとき、
c>rad(abc)
をみたすcは有限個しかない」
のことを指しているのだと天照大神さんが言っているのかと思いました(この解釈が間違ってたらごめんなさい)
だとするならリンクの記事で真っ向から否定されてるので、「どっちが正しいのか」という発言に至りました。
的外れなこと言ってたら申し訳ないです……。
すがくてたのちい さん丁寧な解説をありがとう。北村某は 予想と証明の区別もつかぬ 暴論妄論者ですが いちいち付き合っている皆さんの根気に感心しました。脱帽。
35:50 直角三角形の辺についてこの式が成立することが三平方の定理であるのだから、「三平方の定理より3^2+4^2=5^2や5^2+12^2=13^2が成り立つ」というのは問題があるんじゃない?
「2つの自然数の平方の和がある自然数の平方になる」を聞いた時に多くの人が思い浮かぶのが三平方の定理であり、その中でも3:4:5や5:12:13などの簡単な整数の比で表せる特徴的な三角形も覚えている人が多いと投稿主が判断したんだと思います。
感動しました、こういう懇切丁寧な動画を待っていました。先人の知恵も知っていたので大変分かり易かったです、ありがとうございました。
強いABC予想が証明されるとフェルマーの最終定理が証明されることがわかりました。おもしろかったです。
xyz
ロクドー わかる
ロクドー 分かるw
ついにABC予想が証明されましたね
伊藤誠 秀逸
Arthur Euripedes Lelouch-Watson 証明されましたね!
@@高山むなみ 笑笑
伊藤誠 うますぎる
CM面白いですね
マルキヨ製菓バンザイ
\(^^)/
2020/04/04 証明されました
ほんとに凄いこと。
2012で出来てて、査読が2020に済んだってだけだから、実質2012には済んでたのでは…
@@user-pb3nv3ic6t それは結果論じゃないですか?
背理法いいっすねぇ~ 整数問題で使うことありありやしおもしれ~~
フェルマー最終定理のnが6以上の場合が長い間証明されなかったことと、強いABC予想が証明されていないことに関連性ってあるんですかね。
37:48 x'とy'は互いに素であるとは限らないのでは?(x'=y'=1の可能性)
1と1は公約数1しかないから互いに素では?
果汁 ありがとうございます。勉強になりました。
CM入るの草
将来的にはリーマン予想のゼータ関数も、(47:13みたく)6番目よりも手前のゼロ点が全て1/2の直線上に並んでいたら、その先はどんなに無限大まで伸ばしても、永久に同じ直線上にしか並ばないよ!みたいなところまで到達するんかな??(?_?)
本日証明されたので見に来ました。
同じく
望月先生すごい
同じく
8年前です
ゆかり
8年前時点では"証明された"と認められてないよ。8年かけて望月先生の論文が正しいのか精査したんだよ。
42:20 はいてますよ
これは、いい動画
数学は比較的得意だけれど、微積に線形代数ばかりで整数論とかは一切やってなかったです。そんな自分ですが、流してみて一発で理解できるレベルでした。ステキ♡
44:00からのスライドでrad(x^n y^n z^n)=rad(xyz)の理由が分かりません。お教えください!
Takahito Sugiyama 動画にある【素因数分解とrad(n)】をご覧になればわかると思います
前半見ました?
radについて解説ありますよ
数学は本当に面白いですね。
ずっと知りたかった
12:09 18と2の最大公約数はになってますよ
一ページで証明したといえばいえるが、 先人たちの知恵より・・ のため、結構ページ数あるかも。
でも楕円曲線をつかうあのやり方より 直接的で早いような。
第2部どこ?
ついに!
最後の説明ないきなり雑で笑った
対偶を取ればフェルマーの最終定理の
反例見つけたらABC予想が成り立たなくなるんかな
もしABC予想からフェルマーの最終定理が導かるとするなら、確かにフェルマーの最終定理の反例を見つければABC予想も成り立たないことが証明出来ます。しかしフェルマーの最終定理はワイルズ教授がABC予想とは別で証明しているので反例はないです。証明に不備がない限り絶対に見つかりません。
もし反例なんて見つかったら数学会が数百年分ひっくり返るぞ
フェルマーの証明には色んな分野絡んでるから
1ページあたりの記述量がわからないからな
rad(abc)=Cになる場合はないのでしょうか?
結論から言うとないです。理由はa,bは互いに素なので片方が偶数の時(パターン1)はcは奇数となり、両方が奇数の時(パターン2)はcは偶数となるのでradで素因数どうしの計算をするとパターン1の時は答えが絶対偶数になりパターン2の時は絶対答えが奇数になるので=で結ばれることはありません。今更の返信ですみません。
これもしかしたら大学入試でこれを用いて「フェルマーの最終定理を証明せよ」ってでるかもな
そんなん出たら数学オタク全員興奮する
CM怖い
もう一個の途轍もなく厄介な「リーマン予想」も解決間近になりそう?あれは素粒子物理学と関係してるとか・・・。
すみません~。背理法をどこでつかったかわからなくて困ってます。矛盾って言葉が出てこなくて。凄いいい動画ですごいわかりやすかったのですが、ABC’は仮定の矛盾ではないですよね?最初にでたg’は何回も見てやっとこ自然数すべてに拡張させるためだと分かったのですが、文系なんでわかりやすくてほんといい動画。すごい。続編待ってます。
すみません。最後勘違いしてました。お恥ずかしい。
第二部どこだろう
abc-triple(a²,b²,c²)は存在するのだろうか
よく見たらただの原始ピタゴラス数の二乗じゃないか()
47:40 これを証明出来なきゃ試験では対応できないじゃないか
ゆっくりが本当にゆっくり
CMが長い
この動画は10分にまとめられるくらいの内容しか保持していない
これは批判ではなくて、
中学1年生に理解させるには十分すぎる内容だし、一回の授業で解説するには十分にゆっくり(優しく)解説している、という意味
ABC予想証明されたぞ!!!
すみません。わかりました。最後勘違いしておりました。すごい証明!
なぜ途中からABC予想にダッシュがついているのですか?
あと、x,yが互いに素である場合は?
x,yが互いに素じゃなくても最大公約数gがx,y,zに含まれるから両辺をgで割って互いに素の状態にもってけます
横内奎吾 横内奎吾 ABC予想は
「a+b=cを満たす互いに素なa,b,cの組(a,b,c)に対し、積abcの互いに異なる素因数の積をdと表す。この時、∀ε>0,c>d^(1+ε)を満たす組(a,b,c)は高々有限個だろう。(d=rad(abc)。」
っていう予想ですが、フェルマーの最終定理を証明するときはc
これって、証明なのか??
望月スゲ
すげーよ
なんか最後腑に落ちんなぁ
x,y,zともに0は?
工場食パン x,y,zは自然数の組がないということを証明しているので0は当てはまりません
面白すぎる
途中から頭痛くなってきた
先人は偉大
Nobel 賞だ!素晴らしい!天才ですね!
JJ Crescent うっせぇボケ‼️
数学にノーベル賞はありません。
フィールズ賞っすね
素因数分解を小学校で習ってないんですけど...
以上です。
カーナビの声
谷山・志村予想とは関係がないんですね。
そりゃ、「正しいであろう予想」を成り立つものとするなら簡単に証明できるわな。
それならフェルマーの最終定理も成り立つものとする、って言ってるのと大差ないで。
その過程にある一つ一つを証明することが大変なのにすっ飛ばしすぎやわ。
水原 まぁ、そもそもフェルマーの最終定理を高校数学で証明する。の時点でめちゃくちゃなんだけどね。僕は理学部で趣味でワイルズ氏の論文を見してもらったことがあるけど指一本触れることが出来なかった覚えがある。
スキップボタン探してしまった
すげーな
n=2の時、三平方の定理で証明できるから3以上の整数の場合のみ?
んんんうったん 常識の範囲内
何をいまさら
シビュラシステムが解説してそう(小並感)
1995年にフェルマーの定理が証明されたんだから、逆説的にABC予想も証明されたようなもんじゃないんか?
無能
今更ではあるけどABC予想が正しいことはフェルマーの最終定理が正しいための十分条件なのだと思われ
(逆は成り立たないかと)
USJにいるには大阪に居ないといけないけど、大阪にいるのにUSJにいる必要はないやろ?
ほんでabc'予想は正しいんか?
正しいことが望月教授によって証明されました
ちょかくせきしば それって直接論文見ないとわかんない感じですよね
どっかに論文あるのかな...
今日完全に証明された
めちゃめちゃ難解かつ600ページくらいあるらしいけど
ABC予想証明記念
動画に広告組み込まれてて笑ったw
43.29
ABC予想Q.E.D記念
えーと良くわからないんだけど、「ABC’予想」ということは「予想」なので証明されていない、つまり定理じゃないということだよね。
定理じゃない予想を使って、他の定理を証明できるのかい?証明したことにならんんでしょ。
高2やけど理解できん
同じく高2ですが同じくわかりません。
@@ku1632 良かった
逆にこれで全部分かるって人がいるのかが気になりますね。
これなら小学生でも理解出来ますね。
数学あんまり勉強してこなかった人はきついこと言うけどわからんよね。
数学って論理、本質を見抜く、組み立てる力を養うから学校教育で教わってるのであって。
それに、何に役に立つ?って、
そんなんわからんで当たり前やからなあ。意義を見つけにかなきゃ。
証明した人が〜とか、こんなんできて何になる〜って考えてらっしゃる方は少し可哀想だと思った。
申し訳ない。
素因数分解は小学校では習わないぞ。
ならうでしょ
@@SABUSUKU54KUDASAI 何年生だよ?!
ABC予想証明出来たらしいから来た
自然数の組割和算
素因数分解はちゅ学生
小学校では習わないって
中学校、高校の数学の勉強を頑張ってください。きっと理解できるようになります
うちはならったわ
ひじき 知るかwwww
余白が狭すぎる←無能
定理に変わったね
ただの背理法で草
フェルマーの最終定理が大学受験レベルまで落ちてるやん
来年から出るから受験生が勉強しとけ
ytr _ もちろんx^n+y^n=z^n(n=3.4.5)のとき成り立たないのは自力で証明ですね!回答欄に先人の知恵を借りたとは書けないのでw
メイプル 最悪それでいくわ
てんてけてん
何言ってんのお前
うるせえ
ヌベスコの森 一人で喋ってて悲しくないの?
ヌベスコの森 クソワロタ
ちょ、何?この数学ばっか出てくる動画は?ウチィわぁ、沖縄お菓子のぉ、やつをぉ見に来たんだけどぉ!(怒) マジぃふざけないで!数学のCM長すぎぃ!(怒)
ネタなの?
普通に勉強動画じゃない?
分からんけど。
ぴーとぅー
えぬじょーえぬじょーあしたのじょー
CM邪魔すぎ。