Solution to the Damped Harmonic Oscillator using LAPLACE TRANSFORMS!

Поделиться
HTML-код
  • Опубликовано: 12 сен 2024
  • 10-15% Off all my Merch :) Use Code 42069 over on papaflammy.myt...
    10% or more Off ALL Stirling Engines! =D stemerch.com/c...
    Advent Calendar Playlist: • Advent Calendar 2020
    Laplace Transform Playlist: • Laplace transform: The...
    Damped Oscillator: • Second Order Linear Ho...
    Today we are going to solve the equation for a damped pendulum, using Laplace transforms. We also explore the phase space and turn it into a simplified equation that uses phase shifts by Trigonometric identities. Enjoy! =)
    Help me create more free content! =)
    stemerch.com/
    / mathable
    papaflammy.myt...
    Merch :v - papaflammy.myt...
    www.amazon.com...
    shop.spreadshi...
    Become a Member of the Flammily! :0 / @papaflammy69
    2nd Channel: / @npcooking69
    --------------------------------------------------------------------------------
    Wanna send me some stuff? lel:
    Postfach 11 15
    06731 Bitterfeld-Wolfen
    Saxony-Anhalt
    Germany
    --------------------------------------------------------------------------------
    Twitter: / flammablemaths
    Instagram: / uncomfortably_cursed_m...
    Flammy's subreddit: / flammybois
    Facebook: / flammablemaths
    Want to know more about me? Watch my QnA! =D • Question and Answer Ti...

Комментарии • 91

  • @evanev7
    @evanev7 3 года назад +58

    Your inverse Laplace transform doesn't match up with the identity you provided. You had (s+γ)/((s+γ)^2+ω^2), but the identity on screen had (s+γ)/((s-γ)^2+ω^2). Did I miss something?

    • @gnikola2013
      @gnikola2013 3 года назад +13

      I'm thinking exactly the same

    • @PapaFlammy69
      @PapaFlammy69  3 года назад +35

      My bad, that was a typo! The numerstpr must have a - too!! Sry for that ^^'

    • @gnikola2013
      @gnikola2013 3 года назад +15

      @@PapaFlammy69 Don't worry, it was a nice vid anyways. I might start using Laplace transforms to solve equations now, just so that the initial conditions appear in the solution! Very nice

    • @PapaFlammy69
      @PapaFlammy69  3 года назад +10

      Yup, definitely extremely powerful! :) Thank you for noticing and glad you liked the video

    • @ThAlEdison
      @ThAlEdison 3 года назад +1

      Yeah, the identity graphic had a typo. The sign of b is supposed to match for the damped cosine.

  • @captainsnake8515
    @captainsnake8515 3 года назад +65

    1:35 "now what's a damped harmonic oscillator? Well, imagine you have a pendulum..."
    > Harmonic oscillator
    > Pendulum
    Papa's gone full engineer, he can't be saved anymore.

    • @oni8337
      @oni8337 10 месяцев назад

      Isn't a pendulum a harmonic oscillator though? Just not a simple harmonic one.

  • @korayacar1444
    @korayacar1444 3 года назад +22

    always excited for another episode of 'papa flammy's seventh counter-order O Y A A A A A A ha, are you here'

    • @captainsnake8515
      @captainsnake8515 3 года назад

      this is the proper way to type out the intro

  • @NPCooking69
    @NPCooking69 3 года назад +2

    Hey you, thanks for watching

  • @rhealastname266
    @rhealastname266 3 года назад +17

    Papa flammy advent calendar
    *Oooaeeeeeeeeeaheyyeyeyeyey*

  • @matron9936
    @matron9936 3 года назад +9

    Or you know, guess it to be or the form of ae^(bt)+ce^(dt) or something

    • @angelmendez-rivera351
      @angelmendez-rivera351 3 года назад +2

      You could, but a priori, you would have no reason to guess this unless you already knew the solution is a simple function. Of course, we stand on the shoulders of giants, so it is well-known that these equations are solved by linear combination of exponential functions, but just guessing would be against the spirit of trying to systematically find a solution with the same intuition that our predecessors used a long-time ago. Developing that intuition is useful, since guessing only works for certain types of equation, and certainly not every equation we would be interested in.

  • @dozzco2827
    @dozzco2827 3 года назад +4

    God Phase Space + Laplace Transforms are Such and Awesome Combination!!

  • @andreemery4964
    @andreemery4964 3 года назад +29

    these transforms make me so damped 🥵

  • @skc4188
    @skc4188 6 месяцев назад

    Laplace transform is, in fact, my favorite method to solve all three basic types of oscillation (simple harmonic, damped and driven). =)
    The cool thing about the harmonic equation in particular is that you can use it to practice a method you've just learned to solve differential equations (I know four in particular: Euler, Laplace, Frobenius and variational calculus)

  • @user-hi4dt4ce6t
    @user-hi4dt4ce6t 3 года назад +7

    “pendulum is basically a swinging delta function”

  • @KazACWizard
    @KazACWizard 3 года назад +4

    papa flammy, u are so good i understand this whole derivation, and i havent even reached uni yet-(3 years away :D)

  • @GeodesicBruh
    @GeodesicBruh 2 года назад +2

    My man snorts a line of cocaine before every video
    Love the energy and content

  • @CrittingOut
    @CrittingOut 3 года назад +4

    Laplace,
    *TRANSFOOOORMMMMMM*

  • @hauntedmasc
    @hauntedmasc 3 года назад

    honestly... i still do laplace transforms for fun.... it's more fun to me than probably it should be haha

  • @holyshit922
    @holyshit922 Год назад

    If you wind the spring your pendulum can swing even one month
    You assume that (omega_0 - gamma)(omega_0 + gamma) > 0
    In my opinion this should be explained why this assumption is possible

  • @Anankin12
    @Anankin12 3 года назад

    I literally did this today to find the model I need to fit my data to, and I get it recommended

  • @VaradMahashabde
    @VaradMahashabde 3 года назад +2

    AAAAAAAAAAAAAH, been long time since i heard that intro TTS

  • @frankthomas9570
    @frankthomas9570 3 года назад +1

    this is cool thanks

  • @meowwwww6350
    @meowwwww6350 3 года назад +1

    Papa flammy you came in my dream!!

  • @JacopoBerzeatti10
    @JacopoBerzeatti10 3 года назад

    The figures and the graph in the thumbnail look Amazing, which software are you using?

  • @user-yg2su3kl1b
    @user-yg2su3kl1b 2 года назад

    thanks you , I understand everything but in a research I have the solutions was in cosine it's the same right ! and thank you alot

  • @HAL-oj4jb
    @HAL-oj4jb 3 года назад +13

    Ah yes, another 2 to 5 minutes long video :p

    • @PapaFlammy69
      @PapaFlammy69  3 года назад +7

      Every god damn year xD

    • @HAL-oj4jb
      @HAL-oj4jb 3 года назад +1

      @@PapaFlammy69 ye, but I guess no one would complain about too much content ^^

    • @clipit4503
      @clipit4503 3 года назад

      @@PapaFlammy69 Yo chill with the advanced mathematics. Give our rookies also a chance

  • @dominikstepien2000
    @dominikstepien2000 3 года назад +1

    11:26 Shouldn't there be s-gamma in nominator in order for inverse Laplace transform to work?

  • @ricardoparada5375
    @ricardoparada5375 3 года назад

    I love Laplace transform

  • @fernandogarciacortez4911
    @fernandogarciacortez4911 3 года назад

    Papa flammy, what a great video.

  • @vrowniediamond6202
    @vrowniediamond6202 3 года назад +3

    have you heard of just solving the quadratic

  • @WoWSchockadin
    @WoWSchockadin 3 года назад

    Shouldn't it be x(0) * (s - gamma)/((s+gamma)^2 + omega^2) as you identify s + gamma as s - (-gamma) so in the numerator it would be s + (-gamma)?

  • @dectorey7233
    @dectorey7233 3 года назад

    Ah good memories of learning vibrations

  • @diyakomoradi3402
    @diyakomoradi3402 3 года назад

    Hey can I contact you anywhere to get help on a discrete problem I have? I have some work done on it and can show you my best solution so far but i need some advice on how to continue it

  • @aniketeuler6443
    @aniketeuler6443 3 года назад +1

    That inversed my mind 😅😅

  • @whatitmeans
    @whatitmeans 3 года назад +1

    At the begining equation, for a damped pendulum the "realistic" equation have the form:
    \ddot{x} + A*\dot{x} + B*sin(x) = 0
    ¿there is someone have solve this equation without using approximatioms?

  • @shubham_YesOfficer
    @shubham_YesOfficer 2 года назад

    Thank you dear. Can you provide notes of this Question.. ? It's very helpful for me. Love from 🇮🇳 ❣️

  • @williancarvalho9809
    @williancarvalho9809 3 года назад

    may I do the same thing to the damped driven harmonic oscillator ?

  • @arkadelik
    @arkadelik 3 года назад +1

    I like shrek 3

  • @lambdamax
    @lambdamax 3 года назад

    Danke Papa!

  • @tylershepard4269
    @tylershepard4269 3 года назад

    But how about positive feedback for turning a damper oscillator to an in damper oscillator? :p In a feedback system F(s)=H(s)*G(S)/(1+H(s)*G(s))
    Sorry I’m an electrical engineer...

  • @adityaujjwalmain5943
    @adityaujjwalmain5943 3 года назад

    Nice!

  • @xxxViCtOrrulezxxx
    @xxxViCtOrrulezxxx 3 года назад

    NICE some ALPHA engineering MATHS

  • @xiomarabeta9926
    @xiomarabeta9926 3 года назад +1

    Activa los subtitulos en español.

  • @رضاشریعت
    @رضاشریعت 3 года назад +2

    Physics professors just never use laplace transform and this annoys me a lot

  • @davidlenir7517
    @davidlenir7517 3 года назад +1

    Try solving the QHO using Laplace transform. You'll get your fill of gamma functions and Hermite polynomials :)

    • @complex_variation
      @complex_variation 3 года назад

      what is QHO?

    • @davidlenir7517
      @davidlenir7517 3 года назад +1

      @@complex_variation Quantum Harmonic Oscillator.

    • @complex_variation
      @complex_variation 3 года назад

      @@davidlenir7517 thank you!! I'm always trying to learn new thinga

    • @Anankin12
      @Anankin12 3 года назад +1

      The math is not that difficult if you have someone to guide you through it

    • @complex_variation
      @complex_variation 3 года назад

      @@Anankin12 any advice? I'm currently halfway of electrodynamics Griffiths if that gives a notion of my math background

  • @Polaris_Babylon
    @Polaris_Babylon 3 года назад

    Yas

  • @oyibechibundu628
    @oyibechibundu628 3 года назад

    Can you help me solve arcsin(x)=1/sin(x)
    And integral of sec(x)

    • @angelmendez-rivera351
      @angelmendez-rivera351 3 года назад +1

      I think the solution to the equation is transcendental and cannot be expressed using standard functions.
      To antidifferentiate sec(x), rewrite it as 1/cos(x), and multiply by 1, but rewriting 1 as cos(x)/cos(x). In other words, 1/cos(x) = 1/cos(x)·1 = 1/cos(x)·cos(x)/cos(x) = cos(x)/cos(x)^2. Now, notice that cos(x)^2 = 1 - sin(x)^2, so the integrand is equal to cos(x)/[1 - sin(x)^2]. Also, notice that d[sin(x)] = cos(x)·dx. Therefore, let y = sin(x), so cos(x)·dx = dy, resulting in an integrand of 1/(1 - y^2).
      1/(1 - y^2) = 1/[(1 - y)·(1 + y)] = 2/[2·(1 - y)·(1 + y)] = [(1 - y) + (1 + y)]/[2·(1 - y)·(1 + y)] = (1/2)/(1 + y) + (1/2)/(1 - y), and the principal antiderivative of this with respect to y is ln(1 + y)/2 - ln(1 - y)/2 = ln(sqrt[(1 + y)/(1 - y)]) = ln[sqrt([1 + sin(x)]/[1 - sin(x)])] = ln[sqrt([1 + sin(x)]^2/[1 - sin(x)^2])] = ln(|[1 + sin(x)]/cos(x)|) = ln[|sec(x) + tan(x)|].
      Before adding constants of integration to get the full family of antiderivatives, you must take into consideration that sec(x) has poles at x = π/2 + nπ for every integer n. Therefore, for every discontinuity, there is a different arbitrary constant of integration. Therefore, to get the full family of antiderivatives, you add Σ{C(n)·sgn(x - π/2 - nπ)}. As such, the antiderivatives of sec(x) are given by ln[|sec(x) + tan(x)|] + Σ{C(n)·sgn(x - π/2 - nπ)}. You can verify for yourself that differentiating this will give sec(x) everywhere in its domain.

  • @zachhuff8169
    @zachhuff8169 Год назад

    Had the previous math video on 2x speed. and then lightspeed was achieved

  • @dijkstra4678
    @dijkstra4678 3 года назад

    Wow

  • @oscarobioha595
    @oscarobioha595 3 года назад

    Interesting

  • @comma_thingy
    @comma_thingy 3 года назад

    11:20 why does father flamboyant look so smug

  • @abhishekkp7121
    @abhishekkp7121 3 года назад

    Desribe elliptical integral in laymans term.

  • @luisramrod9121
    @luisramrod9121 3 года назад

    pappa Flammmmy 😃😃😃

  • @fem_channel045
    @fem_channel045 2 года назад

    Cat has it

  • @maxwellsequation4887
    @maxwellsequation4887 3 года назад +2

    Not first
    :(

  • @mind-h4i
    @mind-h4i 3 года назад

    1:39
    Omg1!1!1!1!1!1!1!!!1111
    Flammable math did nono German salute let's cancel him
    (This is a joke, I know it's not the Nazi salute)

  • @illonggoako1372
    @illonggoako1372 3 года назад

    Wow that's an expensive subject..

  • @april-gb5mm
    @april-gb5mm 3 года назад

    vErY eBic

  • @oliverbutterworth362
    @oliverbutterworth362 3 года назад

    Bro should’ve just completed the square and u get the same answer

  • @الفيزياء-ب2ي
    @الفيزياء-ب2ي 3 года назад

    ايلافيوه (:

  • @blackhole3407
    @blackhole3407 3 года назад

    Soo.. whats a laplace transform😐

  • @prateekmourya9567
    @prateekmourya9567 3 года назад

    I unsubscribed for that unclear upside-down meme

  • @samifahad9185
    @samifahad9185 3 года назад

    sooner you will be physicist