Este canal es mi favorito a nivel de matemáticas. Es el único que trata temas complejos explicándolos sin analogías que dan una vaga idea de lo que se está hablando, a la vez que se hace entender muy bien. MM, soy tu fan. Saludos desde Colombia
La primera vez que vi el tema de los productos infinitos, y que dunciones como seno y coseno se podian factirizar a mi me parecio alucinante, incluso mas que la formula de wallis, esa demostracion del teorema de weirstrass me parece una demostracion que es muy bonita, dentro del campo de variable compleja, que gran video 😮
Ustedes los matemáticos siempre me sorprenden, parecen magos, siempre encuentran formas de encontrar un resultado o constante de maneras tan raras. Gran videos y gran explicacíon!.
Soy muy terrible en mateticas y me balanceo más Historia, filosofía o literatura pero últimamente me e puesto de meta el mejorar esa área , eres muy bueno explicando!
viejo, tu canal es el mejor de matematicas en español, siempre solia ver los videos de 3blue1brown y me quedaba encantado con su forma de explicar y sus animaciones, pero ahora que veo un contenido similar, pero en español, no sabes lo contento que me pone, saludos crack
Hola, soy el que decía haber resuelto la Hipótesis de Riemann. Mike me dijo que le enviase mi demostracion pero ha pasado ya una semana y media y no me ha contestado. Por tanto, esta pregunta es para Mike: recibiste mi mensaje?? Has leído mi demostración??? Porfas petad este comentario a likes para que Mike pueda verlo
8:38 el canal Archimedes Tube tiene un vídeo explicándolo paso a paso; está muy bien, creo q el título es 'el problema de Basilea'. Si alguien tiene interés, en el libro «Euler, el maestro de todos los matemáticos», de la editorial Nivola, se explica la solución q dio Euler; además de muchas otras contribuciones suyas a diferentes áreas de las mates.
Saludos Mike!. Soy nuevo en el canal y me he enrollado viendo todos tus vídeos seguidos 😂 y son muy buenos videos!. Muy interesantes, explicas todo muy bien y te tomas el trabajo de hacer gráficas etc y eso se aprecia mucho. Muy buen trabajo!, Sigue así y sube más videos 😂😂. Saludos máquina 💪🏽
0:43 Joder, que ya sea parte del canal y que no fuese puntual lo hace aún mejor. Irónicamente, hace no mucho, me topé con una ecuación sobre relatividad especial donde el matemático que lo propuso casualmente tenía el mismo nombre que Lorentz
Productorio esta bien dicho? Esta formula luego ayuda a resolver integrales trigonometricas definidas mas dificiles. Gracias por usar "multiplicar a ambos lados" y no "paso dividiendo" Me encanta el video Mike, eres un crack
"Simplemente volteamos todo en nuestro producto" 8:13. Ahí me perdí porque no recuerdo qué propiedad de la aritmética de fracciones me permite "voltearlas" para multiplicarlas entre sí como si nada
Justo ayer vi como la función gamma en 1/2 toma el valor raíz de pi y en la demostración apareció la sucesión de wallis, genial vídeo me enteré perfecto. Podrías hacer otro de productos infinitos, como el que aparece en este vídeo, y la relación que tienen con la convergencia de las series infinitas
Oye, pregunta, aqui andas dando una division entre racionales como irracionales (pi/2) pero normalmente el statement dice que dos numeros racionales divididos dan racionales. (Como rompimos esto?)
Eso es el límite del volumen de un prisma rectangular cuyo lado tiende a infinito y cuya base es un cuadrado de lado el producto de fracciones cada vez mayores tendiendo a 1. La cuadratura del círculo es descabellado pero la curvatura de un prisma no lo es. De ahí que sea tan fácil llegar a la relación del pi al cuadrado de problema del Brasilea multiplicando por pi /2 y dividiendo por 3/2, pues el volumen es el area del polígono de la base multiplicado por la altura de la pirámide dividido entre 3, escogiendo la altura que nos interesa.
5:55 como diria Anibal "L'hopital, L'hopital, L'hopital"(Haciendo el gestito de la pistolita). Si llegas a leer esto, a lo mejor fliparás un poco, pero aqui hay otro estudiante de mates en la UV ✌️
Hola Mike, me molan mucho estos vídeos porque aprendo cosas que aun no entiendo mucho, y esta serie de Wallis se cumple también por esta igualdad: 1 = 0 + 1 3 = 1 + 2 6 = 3 + 3 10 = 6 + 4 15 = 10 + 5 21 = 15 + 6 28 = 21 + 7 36 = 28 + 8 45 = 36 + 9 Saca tus propias conclusiones con el conjunto de sumas de los primeros 10 números de la serie. Que salga un 45 no es de casualidad, es porque es la mitad del seno Sin(90)... Un saludo.
Y yo hace unos años pensando que matemáticas era solamente aritmética (aunque cabe resaltar que la aritmética es la base para ver todo lo demás en el universo de los números). Buen video.
bro pero existen infinitas funciones cuyas raices son los numeros enteros, y segun tu razonamiento todas ellas deben tener la misma representacion en productorias infinitas, esa critica se la hicieron al mismisimo Oiler cuando presento su demostracion, pero aun asi es sorprendente que en verdad esa es la representacion del seno en productorias, existen varias formas de demostrarlo, con variable compleja, con la funcion beta, sacando las raices de un polinomio de grado n y tendiendo al infinito, con la representacion de la funcion gamma, etc. pero la demostracion que presentaste no es correcta, buen video
Me encantó!! Muchas gracias por el video. Y qué tal un producto cuyo numerador sea (2^n)(4^n)(6^n)... Y denominador (1^n)(3^n)(5^n)... Donde n es real? Llamemos a este producto P(n) Quiza esto permita definir una función f: R -----> R f(n) = P(n)
Sí a1, a2, .., aN son las raíces de un polinomio, entonces C(1-x/a1)(1-x/a2)..(1-x/aN) es una factorización. No conocía esa manera de factorizar. Gracias. Saludos.
Hay una aproximación a pi bastante ajustada que creo leí en Gardner y debemos, creo recordar, a un matemático chino, me equivocaré seguro. Escribimos los 3 primeros números impares dos veces cada uno, es decir, 113355, y los separamos así: 113 y 355. Resulta que si dividimos 355 de 113 da una muy buena aproximación de pi, 3,1415929... en vez de 3.1415927... ¡un error de menos de una 10 millonésima parte! Es curiosa la insistencia en la aparición de la sucesión pares-impares en todo lo que tiene que ver con pi.
Curiosamente yo tuve que hacer un trabajo de matemáticas el año pasado, lo hice sobre el problema de Basilea. Efectivamente, tuve que recurrir a esa factorización del seno para la demostración.
Tengo una pregunta para MIKE, como ese producto es de enteros entre enteros, se supone que se obtiene un racional, y π es irracional así que no debería aparecer π?? Espero respuestas gracias ❤
Podrias hablar de esta Serie de Fibonacci? 1 + 2 + 3/2 +5/3 + 8/5 + 13/8 + 21/13 + 34/21 + 55/34 + 89/55 + 144/89.... y por qué tiende a (1+Raiz de 5)/2
Vale, vale, muy sorprendente que en el numerador salga un pi, pero: a nadie le sorprende que aparezca un 2 en el denominador, cuando todos los números de abajo son impares? xd
¿Esto significa que el cuadrado de todos los pares entre en cuadrado de todos los impares da exactamente π/2? Y también me da la sensación de que esto toca de algún modo a la función Zeta de Riemann, aunque no sé exactamente como.
Un vídeo genial, como todos los demás. Lo que me extraña es que π surge de un cociente entre números enteros, aunque sean infinitos. Esto no lo convertiría en un número racional?
de verdad pienso que este es uno de los canales mas infravalorados en cuanto a canales relacionados a matematicas
infravalorados en general, no hace falta incluir el subconjunto
@@RafaxDRufus ok
@@bubo776 :'(
Es verdad, tiene la calidad de los canales de ciencia de habla inglesa
el canal es relativamente nuevo y la verdad (un año) y ya tiene 70mil suscriptores. Pienso que es un canal muy bien posicionado.
Este canal es mi favorito a nivel de matemáticas. Es el único que trata temas complejos explicándolos sin analogías que dan una vaga idea de lo que se está hablando, a la vez que se hace entender muy bien.
MM, soy tu fan. Saludos desde Colombia
Mike es como 3blue1brown en español. Explica de forma excelente y motiva el gusto por las mates a muchos
Cierto
3blue1brown explica mucho mejor en mi opinión
@@jude874 pues sí este es un canal pequeño no seas tan pesimista, además la comunidad hispana no esta tan interesada en matemáticas como la inglesa.
Esa musiquita de piano siempre la amo
"Casualmente llevaba su mismo nombre" Mr Jagger está en todos lados..
Aoae Ie Ueaoe ya lo predijo
Ya quiero que esto em-π-ece
Que esto em3ece?
@@pablosalinas3270 calla ingeniero(no hate)
;-; que PIngos
oremos murió virgen
Mucho brawl
La primera vez que vi el tema de los productos infinitos, y que dunciones como seno y coseno se podian factirizar a mi me parecio alucinante, incluso mas que la formula de wallis, esa demostracion del teorema de weirstrass me parece una demostracion que es muy bonita, dentro del campo de variable compleja, que gran video 😮
Ustedes los matemáticos siempre me sorprenden, parecen magos, siempre encuentran formas de encontrar un resultado o constante de maneras tan raras. Gran videos y gran explicacíon!.
Soy muy terrible en mateticas y me balanceo más Historia, filosofía o literatura pero últimamente me e puesto de meta el mejorar esa área , eres muy bueno explicando!
viejo, tu canal es el mejor de matematicas en español, siempre solia ver los videos de 3blue1brown y me quedaba encantado con su forma de explicar y sus animaciones, pero ahora que veo un contenido similar, pero en español, no sabes lo contento que me pone, saludos crack
Esto de las sumas y productos infinitos es de lo que más me molaba de cálculo en primero de carrera. Genial vídeo!!
Que genio. Una auténtica maravilla. Acabo de conocer el canal y voy a dar like a todos sus videos porque lo merece.
Éste video me dejó al borde de la silla para al final decir que mi identidad favorita la iba a demostrar en otro video :'v
¡Muy interesante el video! ¿Nos explicarías algún día con que programario elaboras estos vídeos? Muchas gracias
Espectacular canal, con qué programa haces esas animaciones tan bonitas del min 1:23
O sea, 1 elevado a infinito es indeterminado pero multiplicar infinitos 1 da 1? Nah, es broma. Buenísimo video
Hola, soy el que decía haber resuelto la Hipótesis de Riemann. Mike me dijo que le enviase mi demostracion pero ha pasado ya una semana y media y no me ha contestado. Por tanto, esta pregunta es para Mike: recibiste mi mensaje?? Has leído mi demostración???
Porfas petad este comentario a likes para que Mike pueda verlo
No la has resuelto. Se más humilde contigo mismo :)
Lo que hace la gente por likes
@@estebanmartinez4803 ya lo veremos...
@@ekosh6266 para qué quiero yo 15 likes si no es para esto?? Ni que pagaran al que más likes tiene...
Publique la demostración, llevela a una Universidad.
0:40 el destino y sus ocurrencias xd
Genial vídeo Mike, eres sin duda uno de los mejores canales de RUclips de matemáticas, sigue así.
Este canal va a creceeeeeer
¡Qué bella demostración! Muy bien explicado, como siempre.
8:38 el canal Archimedes Tube tiene un vídeo explicándolo paso a paso; está muy bien, creo q el título es 'el problema de Basilea'.
Si alguien tiene interés, en el libro «Euler, el maestro de todos los matemáticos», de la editorial Nivola, se explica la solución q dio Euler; además de muchas otras contribuciones suyas a diferentes áreas de las mates.
Mikkeeee enorme video macho, me he quedado con ganas de que explicases el problema de basilea. Sigue asi eres un crack
5:55 jajaja, no supe si fue burla o no xd
Muy buen video, me gustó la introducción dejando esa duda del porqué aparece pi, y la explicación como siempre muy buena!!
Simplemente fascinate, muchas gracias por hacer estos videos tan increíbles!!!
0:47 la referencia a Mister Jagger
Espectacular aporte. Magnífico. Las matemáticas son hermosas
Saludos Mike!. Soy nuevo en el canal y me he enrollado viendo todos tus vídeos seguidos 😂 y son muy buenos videos!. Muy interesantes, explicas todo muy bien y te tomas el trabajo de hacer gráficas etc y eso se aprecia mucho. Muy buen trabajo!, Sigue así y sube más videos 😂😂. Saludos máquina 💪🏽
0:43 Joder, que ya sea parte del canal y que no fuese puntual lo hace aún mejor.
Irónicamente, hace no mucho, me topé con una ecuación sobre relatividad especial donde el matemático que lo propuso casualmente tenía el mismo nombre que Lorentz
Ya soy fan tuyo, nunca comento los videos que veo, pero creo que tus videos valen la pena
Sus videos hacen que uno ame más las matemáticas dia a dia
Excelente video! Me quedé con intriga sobre el problema de Basilea jaja saludos de Argentina
Excelente video. Muchas gracias por el aporte a las matemáticas. Una consulta: Qué programa usas para elaborar tus videos?
Increíble!!! No entendí nada pero las explicaciones y demostraciones están de lujo. 😅😅
Saludos Mike desde Nicaragua!
Grande Weierstrass, que demostró que estos productos sí se pueden expresar así
0:29 Noether: magia
Yo:concuerdo
Hay mucha calidad acá. Seguí así Mike!
Grande Mates Mikes, mi canal favorito para aprender más sobre la teoría de las matemáticas 👍🏻🤩
De los mejores canales en todo RUclips.
Lástima que no es como facebook, para darle me encanta al vídeo, joder!!!!!!!!
Hermosa demostración. Saludos desde Argentina
Guapísimo cada vídeo Tío Mike
Mike, ¿Podrías hacer un vídeo hablando sobre la conjetura de collatz? Yo creo que es algo bastante simple, se merece un vídeo
Me encanta, quiero más, like y la campanita 😅😃
Hola Mike, una duda, ¿Que usas para hacer las graficas y animaciones?
Productorio esta bien dicho?
Esta formula luego ayuda a resolver integrales trigonometricas definidas mas dificiles.
Gracias por usar "multiplicar a ambos lados" y no "paso dividiendo"
Me encanta el video Mike, eres un crack
Pues ahora me haces dudar, pero creo que sí! Gracias a ti tío!
Tengo una crisis existencial matemática: la matemática de la "ocurrencia" y la matemática axiomática, por lo menos sistemática.
"Simplemente volteamos todo en nuestro producto" 8:13. Ahí me perdí porque no recuerdo qué propiedad de la aritmética de fracciones me permite "voltearlas" para multiplicarlas entre sí como si nada
20/10
GOD, tremenda obra maestra
Justo ayer vi como la función gamma en 1/2 toma el valor raíz de pi y en la demostración apareció la sucesión de wallis, genial vídeo me enteré perfecto. Podrías hacer otro de productos infinitos, como el que aparece en este vídeo, y la relación que tienen con la convergencia de las series infinitas
0:44 Mr.jagger referencia
Oye, pregunta, aqui andas dando una division entre racionales como irracionales (pi/2) pero normalmente el statement dice que dos numeros racionales divididos dan racionales. (Como rompimos esto?)
Eso es el límite del volumen de un prisma rectangular cuyo lado tiende a infinito y cuya base es un cuadrado de lado el producto de fracciones cada vez mayores tendiendo a 1. La cuadratura del círculo es descabellado pero la curvatura de un prisma no lo es. De ahí que sea tan fácil llegar a la relación del pi al cuadrado de problema del Brasilea multiplicando por pi /2 y dividiendo por 3/2, pues el volumen es el area del polígono de la base multiplicado por la altura de la pirámide dividido entre 3, escogiendo la altura que nos interesa.
5:55 como diria Anibal "L'hopital, L'hopital, L'hopital"(Haciendo el gestito de la pistolita).
Si llegas a leer esto, a lo mejor fliparás un poco, pero aqui hay otro estudiante de mates en la UV ✌️
Grande Aníbal, cuando yo estudiaba hacia lo mismo que grande jajajjj
@@MatesMike por cierto, de que es el doctorado que haces? ( En que area de investigacion)
@@ivanjorromedina4010 EDPs i anàlisi funcional. Dóna-li un record a Aníbal de part de Camarasa (probablement no em recorde xD)
@@MatesMike clar, el tinc en el tribunal del tfg, tb li mostrare el teu canal
0:29 y no la única pregunta clave, también por qué sale un dos en el denominador cuando son todo números impares
Yo soy tu suscriptor más joven (creo)
Brutal, de locos 👏👏👏👏👏😍😍😍😍😍
Genial, la verdad usted es maravilloso.
es un caso particular , es buena la explicacion
Hola Mike, me molan mucho estos vídeos porque aprendo cosas que aun no entiendo mucho, y esta serie de Wallis se cumple también por esta igualdad:
1 = 0 + 1
3 = 1 + 2
6 = 3 + 3
10 = 6 + 4
15 = 10 + 5
21 = 15 + 6
28 = 21 + 7
36 = 28 + 8
45 = 36 + 9
Saca tus propias conclusiones con el conjunto de sumas de los primeros 10 números de la serie.
Que salga un 45 no es de casualidad, es porque es la mitad del seno Sin(90)...
Un saludo.
Cómo sabe esa serie?
La relacion de pi con fi y los rios.
Y yo hace unos años pensando que matemáticas era solamente aritmética (aunque cabe resaltar que la aritmética es la base para ver todo lo demás en el universo de los números).
Buen video.
Hey hola aquí tu suscriptor más joven (creo)
Y obviamente entiendo la mitad xD
Pero me gustan los Gatos
Yo tengo 19. ¿Te supero en edad?
Yo 13
Yo 17
@@eulerfancastellano192 Vaya. Entonces no soy el más joven. Pero ¿serás tú el más joven o el Sr. Espectro?
15
La aplicación de L'Hopital es un abuso ya que ese límite es por definición la derivada del seno en cero. Pero bueno ingenieros... Buen video
bro pero existen infinitas funciones cuyas raices son los numeros enteros, y segun tu razonamiento todas ellas deben tener la misma representacion en productorias infinitas, esa critica se la hicieron al mismisimo Oiler cuando presento su demostracion, pero aun asi es sorprendente que en verdad esa es la representacion del seno en productorias, existen varias formas de demostrarlo, con variable compleja, con la funcion beta, sacando las raices de un polinomio de grado n y tendiendo al infinito, con la representacion de la funcion gamma, etc. pero la demostracion que presentaste no es correcta, buen video
Video sobre el teorema de los residuos porfavorrrr !!! molaria un monton
Muy bueno mike!
como siempre fascinante
Para esto sí vale la pena pagar el internet
No entiendo nada pero me gusta verte xd
Me encantó!!
Muchas gracias por el video.
Y qué tal un producto cuyo numerador sea
(2^n)(4^n)(6^n)...
Y denominador
(1^n)(3^n)(5^n)...
Donde n es real?
Llamemos a este producto P(n)
Quiza esto permita definir una función
f: R -----> R
f(n) = P(n)
Qué grande Mike!
gracias a Euler el mejor matemático de toda la historia tenemos esta otra obra de arte.
Sí a1, a2, .., aN son las raíces de un polinomio, entonces C(1-x/a1)(1-x/a2)..(1-x/aN) es una factorización.
No conocía esa manera de factorizar.
Gracias.
Saludos.
Como se puede contar asta el finito y saber el resultado intento entenderlo pero no puedo, 🤔
Hay una aproximación a pi bastante ajustada que creo leí en Gardner y debemos, creo recordar, a un matemático chino, me equivocaré seguro. Escribimos los 3 primeros números impares dos veces cada uno, es decir, 113355, y los separamos así: 113 y 355. Resulta que si dividimos 355 de 113 da una muy buena aproximación de pi, 3,1415929... en vez de 3.1415927... ¡un error de menos de una 10 millonésima parte! Es curiosa la insistencia en la aparición de la sucesión pares-impares en todo lo que tiene que ver con pi.
Curiosamente yo tuve que hacer un trabajo de matemáticas el año pasado, lo hice sobre el problema de Basilea. Efectivamente, tuve que recurrir a esa factorización del seno para la demostración.
¿Y el factorial de 1/2? Pensé que lo iba a decir al final
Hmmmm. No, no, creo que estoy mal.
Se distorsionaron mis recuerdos
Otra referencia a Mr Jagger jajaja
Entonces esto se acerca a que la resta de números cuadrados consecutivos es igual a números impares
En este perfil somos fans de mates mike 👊🏻
The teacher is really good. I will learn from. I will make a video following the teacher to share with everyone.
En la gráfica del principio se ve claramente que la sucesión tiende a 3/2. De donde se deduce que PI vale 3.
Obvio Ingeniero
Gracias,buen video
Tengo una pregunta para MIKE, como ese producto es de enteros entre enteros, se supone que se obtiene un racional, y π es irracional así que no debería aparecer π?? Espero respuestas gracias ❤
Pero es un producto infinito
¿Me habéis llamado?
@Mates Mike ¿qué pasó con la saga del factorial? :-)
Next video!
¿Cómo demostrar que el área bajo la curva y = (1 /1+x^2 ) es igual a pi sin usar sustitución trigonométrica ?
Secretos de los numeros primos.
Nuevo sub
De esta forma, pi no seria racional?
Genial, te gustaria hacer algo sobre la secuencia fibonacci 1.618. Gracias
Una saga de derivadas por favor
Podrias hablar de esta Serie de Fibonacci? 1 + 2 + 3/2 +5/3 + 8/5 + 13/8 + 21/13 + 34/21 + 55/34 + 89/55 + 144/89.... y por qué tiende a (1+Raiz de 5)/2
Vale, vale, muy sorprendente que en el numerador salga un pi, pero: a nadie le sorprende que aparezca un 2 en el denominador, cuando todos los números de abajo son impares? xd
¿Esto significa que el cuadrado de todos los pares entre en cuadrado de todos los impares da exactamente π/2? Y también me da la sensación de que esto toca de algún modo a la función Zeta de Riemann, aunque no sé exactamente como.
Un vídeo genial, como todos los demás. Lo que me extraña es que π surge de un cociente entre números enteros, aunque sean infinitos. Esto no lo convertiría en un número racional?
Muy agudo!
El problema de Basilea es la misma Función Z de Rienmann de 2?
Gran video.