Размер видео: 1280 X 720853 X 480640 X 360
Показать панель управления
Автовоспроизведение
Автоповтор
I really love this
Thanks so much sir
Perfect ..well done
Much love sir/ma.
I did it this way in order to avoid (to try!!!) to make as few errors as possible in my calculations: √(x + 4) + √(2x - 1) = 3√(x - 1) set: • a = (x + 4) • b = (2x - 1) • c = (x - 1) then √(x + 4) + √(2x - 1) = 3√(x - 1) becomes: √a + √b = 3√c (√a + √b)² = (3√c)² a + 2√(ab) + b = 9c 2√(ab) = 9c - a - b (2√(ab)² = (9c - a - b)² 4ab = (9c - a - b)·(9c - a - b) 4ab = 81c² - 9ac - 9bc - 9ac + a² + ab - 9bc + ab + b² 81c² - 9ac - 9bc - 9ac + a² + ab - 9bc + ab + b² - 4ab = 0 a² + b² + 81c² - 9ac - 9ac - 9bc - 9bc + ab + ab - 4ab = 0 a² + b² + 81c² - 18ac - 18bc - 2ab = 0 (x + 4)² + (2x - 1)² + 81(x - 1)² - 18(x + 4)(x - 1) - 18(2x - 1)(x - 1) - 2(x + 4)(2x - 1) = 0 || || (x + 4)² = x² + 8x + 16 || || (2x - 1)² = 4x² - 4x + 1 || || 81(x - 1)² = 81(x² - 2x + 1) = 81x² - 162x + 81 || || 18(x + 4)(x - 1) = 18(x² + 3x - 4) = 18x² + 54x - 72 || || 18(2x - 1)(x - 1) = 18(2x² - 3x + 1) = 36x² - 54x + 18 || || 2(x + 4)(2x - 1) = 2(2x² + 7x - 4) = 4x² + 14x - 8 || (x² + 8x + 16) + (4x² - 4x + 1) + (81x² - 162x + 81) - (18x² + 54x - 72) - (36x² - 54x + 18) - (4x² + 14x - 8) = 0 x² + 8x + 16 + 4x² - 4x + 1 + 81x² - 162x + 81 - 18x² - 54x + 72 - 36x² + 54x - 18 - 4x² - 14x + 8 = 0 x² + 4x² + 81x² - 18x² - 36x² - 4x² + 8x - 4x - 162x - 54x + 54x - 14x + 16 + 1 + 81 + 72 - 18 + 8 = 0 28x² - 172x + 160 = 0 (28x² - 172x + 160)/4 = 0/4 7x² - 43x + 40 = 0 Δ = (-43)² - 4·7·40 = 1849 - 1120 = 729 √Δ = ±√729= ±27 • root #1: x = (-(-43) + 27)/(2·7) = (43 + 27)/14 = 70/14 = 5 • root #2: x = (-(-43) - 27)/(2·7) = (43 - 27)/14 = 16/14 = 8/7 --- /// check: // x = 5 √(5 + 4) + √(2·5 - 1) - 3√(5 - 1) = 0 => x = 5 is a solution // x = 8/7 √(8/7+ 4) + √(2·(8/7) - 1) - 3√(8/7 - 1) ≠ 0 => x = 8/7 isn't a solution --- /// final result: ■ x = 5🙂
Why is x2 rejected?
Substitute 8/7 into x and you'll see that it doesn't work. When you are exponentiation, it introduces extraneous solutions.
It is because it does not satisfy the given equation sir.You can do a simple substitute of x2 into the original equation at your leisure time to verify why it is rejected sir.Thanks a million sir.
I really love this
Thanks so much sir
Perfect ..well done
Much love sir/ma.
I did it this way in order to avoid (to try!!!) to make as few errors as possible in my calculations:
√(x + 4) + √(2x - 1) = 3√(x - 1)
set:
• a = (x + 4)
• b = (2x - 1)
• c = (x - 1)
then √(x + 4) + √(2x - 1) = 3√(x - 1) becomes:
√a + √b = 3√c
(√a + √b)² = (3√c)²
a + 2√(ab) + b = 9c
2√(ab) = 9c - a - b
(2√(ab)² = (9c - a - b)²
4ab = (9c - a - b)·(9c - a - b)
4ab = 81c² - 9ac - 9bc - 9ac + a² + ab - 9bc + ab + b²
81c² - 9ac - 9bc - 9ac + a² + ab - 9bc + ab + b² - 4ab = 0
a² + b² + 81c² - 9ac - 9ac - 9bc - 9bc + ab + ab - 4ab = 0
a² + b² + 81c² - 18ac - 18bc - 2ab = 0
(x + 4)² + (2x - 1)² + 81(x - 1)² - 18(x + 4)(x - 1) - 18(2x - 1)(x - 1) - 2(x + 4)(2x - 1) = 0
||
|| (x + 4)² = x² + 8x + 16
||
|| (2x - 1)² = 4x² - 4x + 1
||
|| 81(x - 1)² = 81(x² - 2x + 1) = 81x² - 162x + 81
||
|| 18(x + 4)(x - 1) = 18(x² + 3x - 4) = 18x² + 54x - 72
||
|| 18(2x - 1)(x - 1) = 18(2x² - 3x + 1) = 36x² - 54x + 18
||
|| 2(x + 4)(2x - 1) = 2(2x² + 7x - 4) = 4x² + 14x - 8
||
(x² + 8x + 16) + (4x² - 4x + 1) + (81x² - 162x + 81) - (18x² + 54x - 72) - (36x² - 54x + 18) - (4x² + 14x - 8) = 0
x² + 8x + 16 + 4x² - 4x + 1 + 81x² - 162x + 81 - 18x² - 54x + 72 - 36x² + 54x - 18 - 4x² - 14x + 8 = 0
x² + 4x² + 81x² - 18x² - 36x² - 4x² + 8x - 4x - 162x - 54x + 54x - 14x + 16 + 1 + 81 + 72 - 18 + 8 = 0
28x² - 172x + 160 = 0
(28x² - 172x + 160)/4 = 0/4
7x² - 43x + 40 = 0
Δ = (-43)² - 4·7·40 = 1849 - 1120 = 729
√Δ = ±√729= ±27
• root #1: x = (-(-43) + 27)/(2·7) = (43 + 27)/14 = 70/14 = 5
• root #2: x = (-(-43) - 27)/(2·7) = (43 - 27)/14 = 16/14 = 8/7
---
/// check:
// x = 5
√(5 + 4) + √(2·5 - 1) - 3√(5 - 1) = 0 => x = 5 is a solution
// x = 8/7
√(8/7+ 4) + √(2·(8/7) - 1) - 3√(8/7 - 1) ≠ 0 => x = 8/7 isn't a solution
---
/// final result:
■ x = 5
🙂
Why is x2 rejected?
Substitute 8/7 into x and you'll see that it doesn't work. When you are exponentiation, it introduces extraneous solutions.
It is because it does not satisfy the given equation sir.
You can do a simple substitute of x2 into the original equation at your leisure time to verify why it is rejected sir.
Thanks a million sir.