A Trending Radical Equation With Square Roots.

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 8

  • @preciousLizzie-t3x
    @preciousLizzie-t3x 19 дней назад +1

    I really love this

  • @KATHREEN-f5o
    @KATHREEN-f5o 18 дней назад

    Perfect ..well done

  • @GillesF31
    @GillesF31 5 дней назад

    I did it this way in order to avoid (to try!!!) to make as few errors as possible in my calculations:
    √(x + 4) + √(2x - 1) = 3√(x - 1)
    set:

    • a = (x + 4)

    • b = (2x - 1)

    • c = (x - 1)

    then √(x + 4) + √(2x - 1) = 3√(x - 1) becomes:

    √a + √b = 3√c

    (√a + √b)² = (3√c)²

    a + 2√(ab) + b = 9c

    2√(ab) = 9c - a - b

    (2√(ab)² = (9c - a - b)²

    4ab = (9c - a - b)·(9c - a - b)

    4ab = 81c² - 9ac - 9bc - 9ac + a² + ab - 9bc + ab + b²

    81c² - 9ac - 9bc - 9ac + a² + ab - 9bc + ab + b² - 4ab = 0

    a² + b² + 81c² - 9ac - 9ac - 9bc - 9bc + ab + ab - 4ab = 0

    a² + b² + 81c² - 18ac - 18bc - 2ab = 0

    (x + 4)² + (2x - 1)² + 81(x - 1)² - 18(x + 4)(x - 1) - 18(2x - 1)(x - 1) - 2(x + 4)(2x - 1) = 0

    ||
    || (x + 4)² = x² + 8x + 16
    ||
    || (2x - 1)² = 4x² - 4x + 1
    ||
    || 81(x - 1)² = 81(x² - 2x + 1) = 81x² - 162x + 81
    ||
    || 18(x + 4)(x - 1) = 18(x² + 3x - 4) = 18x² + 54x - 72
    ||
    || 18(2x - 1)(x - 1) = 18(2x² - 3x + 1) = 36x² - 54x + 18
    ||
    || 2(x + 4)(2x - 1) = 2(2x² + 7x - 4) = 4x² + 14x - 8
    ||

    (x² + 8x + 16) + (4x² - 4x + 1) + (81x² - 162x + 81) - (18x² + 54x - 72) - (36x² - 54x + 18) - (4x² + 14x - 8) = 0

    x² + 8x + 16 + 4x² - 4x + 1 + 81x² - 162x + 81 - 18x² - 54x + 72 - 36x² + 54x - 18 - 4x² - 14x + 8 = 0

    x² + 4x² + 81x² - 18x² - 36x² - 4x² + 8x - 4x - 162x - 54x + 54x - 14x + 16 + 1 + 81 + 72 - 18 + 8 = 0

    28x² - 172x + 160 = 0

    (28x² - 172x + 160)/4 = 0/4

    7x² - 43x + 40 = 0

    Δ = (-43)² - 4·7·40 = 1849 - 1120 = 729

    √Δ = ±√729= ±27

    • root #1: x = (-(-43) + 27)/(2·7) = (43 + 27)/14 = 70/14 = 5

    • root #2: x = (-(-43) - 27)/(2·7) = (43 - 27)/14 = 16/14 = 8/7

    ---

    /// check:

    // x = 5

    √(5 + 4) + √(2·5 - 1) - 3√(5 - 1) = 0 => x = 5 is a solution
    // x = 8/7

    √(8/7+ 4) + √(2·(8/7) - 1) - 3√(8/7 - 1) ≠ 0 => x = 8/7 isn't a solution
    ---
    /// final result:

    ■ x = 5
    🙂

  • @leonznidarsic
    @leonznidarsic 19 дней назад

    Why is x2 rejected?

    • @robertlunderwood
      @robertlunderwood 19 дней назад

      Substitute 8/7 into x and you'll see that it doesn't work. When you are exponentiation, it introduces extraneous solutions.

    • @onlineMathsTV
      @onlineMathsTV  18 дней назад

      It is because it does not satisfy the given equation sir.
      You can do a simple substitute of x2 into the original equation at your leisure time to verify why it is rejected sir.
      Thanks a million sir.