Uniform Continuity (Example 4): Not Uniformly Continuous

Поделиться
HTML-код
  • Опубликовано: 17 авг 2021
  • Showing a function is not uniformly continuous
    In this video, I give another example of a function that's not uniformly continuous. Compare this with Example 1 in the description below.
    What is Uniform Continuity? • What is Uniform Contin...
    Example 1 • Uniform Continuity (Ex...
    Example 2 • Uniform Continuity (Ex...
    Example 3 • Uniform Continuity (Ex...
    Example 4 • Uniform Continuity (Ex...
    Continuity Playlist: • Limits and Continuity
    Subscribe to my channel: / drpeyam
    Check out my TikTok channel: / drpeyam
    Follow me on Instagram: / peyamstagram
    Follow me on Twitter: / drpeyam
    Teespring merch: teespring.com/stores/dr-peyam

Комментарии • 39

  • @e-learningtutor1351
    @e-learningtutor1351 2 года назад +5

    Amazing presentation and excellent explanation sir
    Thank you

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 2 года назад +1

    Excellent presentation. vow !!

  • @fernandobezerrademenezes1622
    @fernandobezerrademenezes1622 3 года назад

    Congratulations, my dear. Amazing video. Hard math made simple and easy to understand!

  • @flowers9652
    @flowers9652 Год назад

    Great proof!🙌🏻🙌🏻🙌🏻🙌🏻

  • @TrueVasember
    @TrueVasember 2 года назад

    Amazing video, watching from india for mid semester tests..

  • @ZipplyZane
    @ZipplyZane 2 года назад +1

    This one is the interesting one to me. I don't remember the classic proof of continuity of f(x)=x² resulting in a delta that was defined in terms of x.

  • @saiharivatsalboyanapalli2344
    @saiharivatsalboyanapalli2344 2 года назад +3

    Super Video

  • @aneeshsrinivas9088
    @aneeshsrinivas9088 2 года назад

    epsilon=1 and x=1/delta, and y=1/delta+0.5*delta would work right? y^2-x^2=(x+0.5*delta)^2-x^2=x^2+2*0.5*delta*x+0.25delta^2-x^2=delta*1/delta+0.25*delta^2=1+0.25*delta^2, if delta>0 then 0.25*delta^2 is also >0 and thus 1+0.25*delta^2>1.

  • @Bedoroski
    @Bedoroski 7 месяцев назад

    A dedicated explanation as always. But what do you mean by: let Epsilon be announced, cuz i'm not a native speaker

  • @SontoshKumarSahani
    @SontoshKumarSahani Год назад

    Hi Can you give the proof/Disproof for
    (a) The product of two uniformly continuous functions on IR is also uniformly continuous.
    (b) The product of two uniformly continuous functions on [0; 1] is also uniformly continuous.

  • @Tletna
    @Tletna 2 года назад +3

    Thank you for the video. I wanted to know if there is a different way of describing what 'uniformly continuous' vs 'not uniformly continuous' actually means that doesn't involve deltas and epsilons. What is the usefulness of making such a distinction (both within math and outside of math)?

    • @Hi_Brien
      @Hi_Brien 8 месяцев назад

      There's stuff we can do on functions that are uniformly continuous that we can't do on functions that aren't. The things we can do with it are very important.
      I'm sure you've learned this in 2 years.

    • @shadaanhassan5936
      @shadaanhassan5936 5 месяцев назад

      Yes you can use the concept of Sequential Criteria for Uniform Continuity to show whether a function is U.C or not. By taking any two arbitrary sequence and showing there difference converging to 0 but there difference of function value limit does not converge to 0

  • @Avinashkumar-uc8qd
    @Avinashkumar-uc8qd 2 года назад

    Sir do we need to fix the delta to get an Epsilon Or delta can be arbitrary....
    Because in this example at 10:50 you wrote let delta be arbitrary but in previous example you wrote let delta be given( like delta is fixed)....

    • @drpeyam
      @drpeyam  2 года назад +1

      We fix epsilon and then get delta, as in step 2

  • @user-fy5tn7sy3t
    @user-fy5tn7sy3t 2 года назад

    Yes it’s super video but need other watching and reversion
    Thank u for video

  • @xfilesz
    @xfilesz 2 года назад

    Is there a more formal way of saying let epsilon be "whatever" in proofs?

    • @drpeyam
      @drpeyam  2 года назад

      Let epsilon be TBA

    • @xfilesz
      @xfilesz 2 года назад

      @@drpeyam What exactly does that mean? It is fixed?

    • @svetlanarusnakova5640
      @svetlanarusnakova5640 2 года назад

      let epsilon be given

  • @saptarshisahoo5075
    @saptarshisahoo5075 2 года назад

    What is the negation of "a implies b"?

  • @lacasadeacero
    @lacasadeacero 2 года назад

    7:27 why did u erase the abs?

    • @drpeyam
      @drpeyam  2 года назад

      x and y are positive

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 года назад +1

    Hello Dear Dr. Peyam.
    Please let me ask you one (maybe personal) question.
    Are you Iranian (specially because of your name)?
    Thanks

    • @drpeyam
      @drpeyam  2 года назад

      Yes

    • @user-wu8yq1rb9t
      @user-wu8yq1rb9t 2 года назад

      @@drpeyam
      Thanks for your attention Dear Peyam.
      I'm Iranian too.
      I like you before, but now I love you!
      Big Fan.

  • @OndrejPopp
    @OndrejPopp 2 года назад +1

    Ok Tx dr Peyam! Ok, now let me think 🤔.. If you take the derivative you get 2x, so... on the positive interval 0 -> ♾️ the slope is increasing and depends on x and so you will always find x + delta that outruns Epsilon. And there it is.. I think 🤔💭

    • @drpeyam
      @drpeyam  2 года назад

      I mean intuitively yes, but there are counterexamples to your statement I think

    • @arturcostasteiner9735
      @arturcostasteiner9735 2 года назад +1

      Formalizing a bit more
      your resoning we can do as follows:
      Fix d > 0 and let |y - x| = d. By the mean value theorem, there is s between x and y such that |f(y) - f(x)| = 2|s| |y - x| = 2s d. Letting |x| --> oo, then |y| --> oo, |s| --> oo and therefore |f(y) - f(x)| --> oo. So, given eps > 0, no matter what d you choose, there'll always be x and y with |y - x| eps. Hence, f is not u.c. on R. The same reasoning shows every polynimial od degree > = 2 is not u.c. on R.

    • @OndrejPopp
      @OndrejPopp 2 года назад

      @@arturcostasteiner9735 Ok tx Artur. I was just preparing my dinner and then I realized that actually that is what you see in your mind 😃 how x + delta outruns epsilon! But then I should have said that f(x + delta) - f(x) outruns epsilon. So thank you for the full formal statement 😃

    • @OndrejPopp
      @OndrejPopp 2 года назад

      @@drpeyam Counterexamples? Don't think so Dr Peyam. Because either x^2 is not uniformly continuous like you have proven by yourself, or it is which would be your counter example but you can't have it both ways... unless you misunderstood what I meant how x + delta outruns epsilon, but that's not what I meant I meant f(x + delta) - f(x).. Sorry about that! 😃

    • @desertpointshacks6299
      @desertpointshacks6299 7 месяцев назад

      Don’t know if this is what you meant but the classic counterexample is f(x)=sqrt(x) which has an unbounded derivative but yet is still uniformly continuous. If you know a function is not uniformly continuous then its derivative will be unbounded.

  • @Sonyakumari-jv5do
    @Sonyakumari-jv5do Год назад

    I wonder a lot finally get solution here .

  • @purim_sakamoto
    @purim_sakamoto 2 года назад +1

    関係ないけど、√εってあまり見ないから可愛い😋

  • @yashj1072
    @yashj1072 2 года назад +1

    ma man

  • @David-km2ie
    @David-km2ie 2 года назад +1

    I would have taken |x-y|=delta/2 then |x+y|>=2epsilon/delta.
    So take x=epsilon/delta and y=epsilon/delta+delta/2 and you are good
    Fun video though to get it exactly epsilon big

  • @user-dj4vf1yw2m
    @user-dj4vf1yw2m Год назад

    ایرانی؟؟