Math Olympiad | Find the sum of the series without using a Calculator | VIJAY Maths

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 5

  • @tipstricksideasZone
    @tipstricksideasZone День назад +2

    Happy diwali sir

  • @kambhatlanaveenkasyap9672
    @kambhatlanaveenkasyap9672 3 часа назад

    The expression \(2^3 + 2^6 + 2^9 + 2^{12} + 2^{15}\) can be calculated using the formula for the sum of a geometric progression (GP).
    ### Steps:
    1. **Identify the GP terms**:
    - The first term \(a = 2^3 = 8\).
    - The common ratio \(r = 2^3 = 8\) (since each term is \(2^3\) times the previous term).
    - There are 5 terms in the sequence.
    2. **Use the Sum Formula for GP**:
    The sum \(S_n\) of the first \(n\) terms of a GP is:
    \[
    S_n = a \cdot \frac{r^n - 1}{r - 1}
    \]
    where \(n = 5\).
    3. **Substitute values**:
    \[
    S_5 = 8 \cdot \frac{8^5 - 1}{8 - 1}
    \]
    4. **Calculate**:
    - Calculate \(8^5\):
    \[
    8^5 = 32768
    \]
    - Substitute \(8^5 = 32768\) into the formula:
    \[
    S_5 = 8 \cdot \frac{32768 - 1}{7} = 8 \cdot \frac{32767}{7} = 8 \cdot 4681 = 37448
    \]
    ### Answer:
    \[
    2^3 + 2^6 + 2^9 + 2^{12} + 2^{15} = 37448
    \]