Can you find the Radius of the circumscribed circle? | (In-depth Proof) |

Поделиться
HTML-код
  • Опубликовано: 9 янв 2025

Комментарии • 36

  • @Abby-hi4sf
    @Abby-hi4sf 7 месяцев назад +4

    Great skill! Love to see how easily you are showing proof theory

    • @PreMath
      @PreMath  7 месяцев назад +1

      I appreciate that!
      Thanks for the feedback ❤️

  • @marioalb9726
    @marioalb9726 7 месяцев назад +2

    s=½(a+b+c) = ½(9+10+11) =15 cm
    Heron's formula:
    A² = s (s-a)(s-b)(s-c)
    A²= 15(15-9)(15-10)(15-11)
    A = 42,43 cm²
    A = a . b . c / 4R
    R = a. b. c / 4A
    R = 9 . 10 . 11 / (4 . 42,43)
    R = 5,83 cm ( Solved √ )

  • @jimlocke9320
    @jimlocke9320 7 месяцев назад +1

    Drop a perpendicular from A to BC and label the intersection as point D. Let BD = x, then CD = 10 - x. Let AD = y. ΔABC has been divided into two right triangles, ΔABD and ΔACD. Applying the Pythagorean theorem to ΔABD, x² + y² = 9² = 81, and to ΔACD, (10 - x)² + y² = (11)² = 121, or 100 - 20x + x² + y² = 121. Replace x² + y² by 81: 100 - 20x + 81 = 121. Solve for x and find x = 3, so y = 6√2. Extend AD into a chord, labelling the other intersection with the circle as point E. Note that BD = 3, CD = 7, AD = 6√2 and DE is unknown, but found to be 7(√2)/4 from the intersection chords theorem, (AD)(DE) = (BD)(CD) in this case. So length AE = 6√2 + 7(√2)/4 = 31(√2)/4. Drop a perpendicular from O to BC and label the intersection as point F, noting that OF bisects BC, so BF = 5. Construct OB. Note that ΔOBF is a right triangle, OB is a radius r, BF is 5 and OF is the distance from D to the midpoint of AE, which is length AE/2 - length DE = 31(√2)/8 - 7(√2)/4 = 17(√2)/8. So r² = (17(√2)/8)² + (5)² = 578/64 + 25 = 2178/64. r = √(2178)/√(64) = (√(1089))(√2)/8 = 33(√2)/8, as PreMath also found.

  • @unknownidentity2846
    @unknownidentity2846 7 месяцев назад +2

    Let's find the radius:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the area of the triangle using Heron's formula:
    s = (a + b + c)/2 = (9 + 10 + 11)/2 = 30/2 = 15
    A(ABC) = √[s*(s − a)*(s − b)*(s − c)] = √[15*(15 − 9)*(15 − 10)*(15 − 11)] = √(15*6*5*4) = 30√2
    For the height of the triangle according to its base BC we obtain:
    A(ABC) = (1/2)*BC*h(BC)
    ⇒ h(BC) = 2*A(ABC)/BC = 2*30√2/10 = 6√2
    Now let's assume that O is the center of the coordinate system and that BC is parallel to the x-axis. Then we obtain the following coordinates:
    O: ( 0 ; 0 )
    A: ( xA ; yA )
    B: ( −5 ; yB )
    C: ( +5 ; yB )
    Now we can try to calculate the radius R of the circumscribed circle:
    (xB − xA)² + (yB − yA)² = AB²
    (xB − xA)² + h(BC)² = AB²
    (−5 − xA)² + (6√2)² = 9²
    (−5 − xA)² + 72 = 81
    (−5 − xA)² = 9
    −5 − xA = −3
    ⇒ xA = −2
    xA² + yA² = R² ∧ xB² + yB² = R²
    xB² + yB² = xA² + yA²
    yB² − yA² = xA² − xB²
    (yB − yA)(yB + yA) = (−2)² − (−5)² = 4 − 25 = −21
    ⇒ yB + yA = −21/(yB − yA) = 21/h(BC) = 21/6√2 = (7/4)√2
    yA − yB = 6√2
    yA + yB = (7/4)√2
    ⇒ yA = (7/4 + 6)√2/2 = (7/8 + 3)√2 = (+31/8)√2
    ∧ yB = (7/4 − 6)√2/2 = (7/8 − 3)√2 = (−17/8)√2
    Let's check these results:
    AC² = (xC − xA)² + (yC − yA)² = (5 + 2)² + h(BC)² = 7² + (6√2)² = 49 + 72 = 121 = 11² ✓
    Now we are able to calculate the radius R of the circumscribed circle:
    R² = xA² + yA² = (−2)² + (+31√2/8)² = 4 + 961/32 = 128/32 + 961/32 = 1089/32
    R² = xB² + yB² = (−5)² + (−17√2/8)² = 25 + 289/32 = 800/32 + 289/32 = 1089/32 ✓
    ⇒ R = √(1089/32) = 33/(4√2) = (33/8)√2
    Best regards from Germany

    • @unknownidentity2846
      @unknownidentity2846 7 месяцев назад +1

      Now I know an easy formula to calculate the radius of the circumscribed circle.🙂 Thanks for that.👍

  • @davew9652
    @davew9652 7 месяцев назад

    I dropped a perpendicular from A, through BC to the circumference. Worked out the height of the triangle and then used the intersecting chord theorum 4r^2=a^2+b^2+c^2+d^2 to find radius

  • @hongningsuen1348
    @hongningsuen1348 7 месяцев назад

    The formula circumradius = abc/(4 x area of trianlge) holds even the circumcentre is outside the triangle.
    A more general proof uses Thales theorem:
    1. Start with triangle ABC with the usual notations for angles and sides circumscribed by circumcircle with centre O and circumradius R.
    2. Draw a diameter BD from B (or other vertex of the triangle) through O to point D on the other side of the circumference.
    It does not matter if O is inside or outside the triangle.
    3. Triangle BAD is a right-angled triangle by Thales theorem as triangle is in semicircle.
    4. With chord AB, the angles in same segment theorem gives angle ADB = angle C of triangle.
    5. sinC = sin(ADB) = AB/BD (sine value from sides of right-angled triangle) = c/2R.
    6. Area of triangle ABC = (1/2) a b sinC = (1/2) a b (c/2R) = (abc)/4R. Hence R = abc/(4 x area of triangle).

    • @hongningsuen1348
      @hongningsuen1348 7 месяцев назад

      Step 4 is for acute angle C.
      For obtuse angle C, angle C is supplementary to angle ADB as opposite angles of cyclic quadrilateral.
      By trigonometric identity, sin(180 - theta) = sin(theta). Hence steps 5 and 6 still hold true.

  • @AndreasPfizenmaier-y7w
    @AndreasPfizenmaier-y7w 7 месяцев назад

    Herons formula tells us an Area of 42,42. Base 10* half of height, Hence perpendicular is 8,48. Prolong this height to the Circle. 2,47 is length of this Part of the chord. 4r^2=a^2+b^2+c^2+d^2. Hence r= 5,83

    • @davew9652
      @davew9652 7 месяцев назад

      You beat me to it but I'll not delete mine as I used a slightly different approach (pythagorus)

  • @lasalleman6792
    @lasalleman6792 7 месяцев назад

    Or: circumradius = a/2sin(A)
    Here, a is a side of the triangle, A is the angle opposite of side a. Using 9 as the side and twice the sin of 50.479 degrees at ACB, Circumradius: 5.83

  • @marcgriselhubert3915
    @marcgriselhubert3915 7 месяцев назад

    R = (2.A)/p, where p is the perimeter and A the area given by the Heron formula.

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 7 месяцев назад

    R=abc/4 🔺
    🔺 =√(15*4*5*6)=30√2 sq units
    R=9*10*11/4*30√2= 8.25/√2=5.834 units (approx )

  • @luigipirandello5919
    @luigipirandello5919 7 месяцев назад

    Belíssimo problema de geometria. Obrigado mestre. O senhor é um professor nota dez.

  • @dirklutz2818
    @dirklutz2818 6 месяцев назад

    Great! Again..!

  • @zehradiyab3439
    @zehradiyab3439 7 месяцев назад +1

    I solved it by using cos rules
    Suppose A is angle in a segment opposite the chord which equal 9
    9²= 11²+10²-2×11×10 cosA
    cosA= 140/220= 7/11
    cos(2A)= 2cos²A-1= 2(49/121)-1 = -23/121
    9²= r²+r²-2r×rcos(2A)
    81= 2r²-2r²(-23/121)
    81= 2r²(144/121)
    9= sqrt(2)×r(12/11)
    r= (33/8) sqrt(2)

  • @prossvay8744
    @prossvay8744 7 месяцев назад +2

    Area of triangle ABC
    S=(9+10+11)/2=15
    Area=√15(15-9)(15-10)(15-11)=30√2
    R=(9)(10)(11)/(4)30√2=33√2/8=5.83 units ❤❤❤

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @Mediterranean81
    @Mediterranean81 7 месяцев назад

    Circumradius = abc/4*area

  • @AmirgabYT2185
    @AmirgabYT2185 7 месяцев назад +4

    r=33√2/8≈5,838

    • @PreMath
      @PreMath  7 месяцев назад +2

      Excellent!
      Thanks for sharing ❤️

  • @ОльгаСоломашенко-ь6ы
    @ОльгаСоломашенко-ь6ы 7 месяцев назад +1

    Формула Героина для определения площади и R=a*b*c/(4*S)

    • @LuisdeBritoCamacho
      @LuisdeBritoCamacho 7 месяцев назад

      Utilizei, exatamente, o mesmo MODUS OPERANDI. Calcular a Área do Triângulo (A) com a Fórmula de Heron e depois R = (a * b * c) / (4 * A). Sendo a ; b ; c ; os respetivos lados de Triângulo Escaleno. Obrigado.

    • @ОльгаСоломашенко-ь6ы
      @ОльгаСоломашенко-ь6ы 7 месяцев назад

      @@LuisdeBritoCamacho pensemos da mesma maneira

  • @murdock5537
    @murdock5537 7 месяцев назад

    This is awesome, many thanks, Sir!
    φ = 30°; ∆ ABC → BC = a = 10; AC = b = 11; AB = c = 9; AO = BO = CO = r = ? BCA = ϑ → BOA = 2ϑ
    81 = 100 + 121 - 2(10)11cos⁡(ϑ) → cos⁡(ϑ) = 7/11 → sin⁡(ϑ) = √(1 - cos^2(ϑ)) = 6√2/11 →
    cos⁡(2ϑ) = cos^2(ϑ) - sin^2(ϑ) = -23/121 → 2ϑ > 3φ → 81 = 2r^2(1 - cos⁡(2ϑ)) → r = 33√2/8

  • @giuseppemalaguti435
    @giuseppemalaguti435 7 месяцев назад

    r=ABC/4A=9*10*11/4√(15*6*5*4)=990/4*√1800=990/120√2=99/12√2

  • @nenetstree914
    @nenetstree914 7 месяцев назад

    Using law of cosines

  • @MrPaulc222
    @MrPaulc222 3 месяца назад

    I did it different, but was wrong by a small margin.
    I went for 30*sqrt(2) = 15h, so (average)h = 2*sqrt(2).
    I ended up with r = sqrt(33)> This would have been ok if it was equilateral with side lengths of the average 10.
    I got r = 5.74 rather than your 5.83

  • @ManojkantSamal
    @ManojkantSamal 5 месяцев назад

    4.12× root 2 ( may be2)

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 7 месяцев назад

    STEP-BY-STEP RESOLUTION PROPOSAL :
    1) Triangle [ABC] Area = A = sqrt(15 * 6 * 5 * 4) ; A = sqrt(1800) ; A = (30 * sqrt(2)) sq un
    2) R = (9 * 10 * 11) / (4 * A)
    3) R = 990 / (4 * 30 * sqrt(2))
    4) R = 990 / (120 * sqrt(2))
    5) R = 33 / (4 * sqrt(2))
    6) R = (33 * sqrt(2)) / (4 * 2)
    7) R = [(33 * sqrt(2)) / 8] lin un
    8) R ~ 5,834 lin un
    9) ANSWER : The Radius Length is approx. equal to 5,834 Linear Units.
    Greetings from Cordoba Caliphate University, the Center of Ancient Greek, Persian, Indian and Arabic Mathematical Knowledge and Wisdom.

  • @jamestalbott4499
    @jamestalbott4499 7 месяцев назад

    Thank you! Appreciated the problem using the formula for a triangle inscribed in a circle.

  • @himadrikhanra7463
    @himadrikhanra7463 2 месяца назад

    11/10 = 1.1 unit ?

  • @rudychan8792
    @rudychan8792 7 месяцев назад

    Not Need Finding: sin 8 = 5/r ?? ❌❌
    Straight to the Point:
    Heron's Formula then R = a•b•c / 4•A = (33/8)•√2 = 5,834
    You can Cut this video 4' shorter. ⏳ 😉