Can you find area of the Blue Square? | (Semicircle) |

Поделиться
HTML-код
  • Опубликовано: 3 фев 2025

Комментарии • 67

  • @syphaxjuba8420
    @syphaxjuba8420 7 месяцев назад +1

    merci sire , excellent exercice

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @andreasproteus1465
    @andreasproteus1465 7 месяцев назад +4

    In the third step, instead of considering the similar triangles, extend OP to become a diameter of the circle and then use the intersecting chords theorem: (32 - a√3)a√3 = (a√2 + a)(a√2 - a) = a² => a = 8√3

    • @PreMath
      @PreMath  7 месяцев назад

      Good job!
      Thanks for the feedback ❤️

  • @mvrpatnaik9085
    @mvrpatnaik9085 7 месяцев назад

    Nice Solution for the rigorous problem. Thank you Sir.

  • @marioalb9726
    @marioalb9726 7 месяцев назад +5

    tan α = Rcos45°/R = 1/√2
    α = 35,26°
    2R = 32 / cos α
    R = 19,596 cm
    A = ½R²
    A = 192 cm² ( Solved √ )

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @gaylespencer6188
    @gaylespencer6188 7 месяцев назад +3

    Recognizing that AO is the same as the diagonal of the square, that is, both are radii, I took that arctan of PAO as a/(a*2^.5) which was 1/2^5. That angle was 35.26438... So the cosine of this angle is 32 divided by 2*a*2^.5 (which is the diameter). Solve for a which is 13.85640646... Then square that number to equal 192.

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @bobbybannerjee5156
    @bobbybannerjee5156 7 месяцев назад

    Brilliant use of Similar triangles 📐 in the end.
    Can we know the name of the app/software with which you are writing ✍️ electronically on the computer screen?

  • @Ottom8
    @Ottom8 7 месяцев назад +1

    AO = OB is not given. I think that should be clarified.

  • @mahdoosh1907
    @mahdoosh1907 7 месяцев назад +1

    with the help of you, i can❤

    • @PreMath
      @PreMath  7 месяцев назад

      Super!
      Thanks for the feedback ❤️

  • @Z-eng0
    @Z-eng0 3 месяца назад

    Can't believe I actually solved it, I even used almost exactly the same method, only difference is I didn't substitute "a" after each use, I made new variables and represented them in equations one by one

  • @murdock5537
    @murdock5537 7 месяцев назад +1

    Very nice! ∆ ABC → AB = 2r = AO + BO; AC = 32; ∎EDPO → PO = EO = DE = DP = a →
    DO = AO = BO = a√2 = r; sin⁡(AOP) = 1 → PAO = δ → PO = a; AO = a√2 → AP = a√3 →
    cos⁡(δ) = a√2/a√3 = √6/3 = 32/2a√2 → a = 8√3 → ∎EDPO = 64(3) = 192

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️
      Thanks for the feedback ❤️

  • @ОльгаСоломашенко-ь6ы
    @ОльгаСоломашенко-ь6ы 7 месяцев назад +2

    Cos(A)=√(2/3). Опускаем перпендикуляр из центра окружности на AC. Делит хорду пополам. а√2=16/(√2/3). а=8√3.

    • @PreMath
      @PreMath  7 месяцев назад +2

      Excellent!
      Thanks for sharing ❤️

  • @pralhadraochavan5179
    @pralhadraochavan5179 7 месяцев назад +1

    Good morning sir I like it

    • @PreMath
      @PreMath  7 месяцев назад

      Hello dear❤️
      Thanks for liking ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 7 месяцев назад +2

    Be R the radius of the circle and t = angleBAC
    In triangle AOB: OP = R/sqrt(2) and AO = R
    Then AP^2 = OP^2 +AO^2 = (R^2)/2 + R^2
    = (3/2).R^2 and AP = sqrt(3/2).R
    Then cos(t) = AO/AP = R/(sqrt(3/2).R)
    =sqrt(2/3)
    In triangle ABC: cos(t) = AC/AB,
    so: sqrt(2/3) = 32/(2.R) and R = 16.sqrt(3/2)
    The area of the square is (R/sqrt(2))^2
    =(R^2)/2 = (256.(3/2))/2 = 64.3 = 192

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @hongningsuen1348
    @hongningsuen1348 7 месяцев назад +1

    I've learned 3 methods from the video and comments:
    After r (radius) = sqrt2 x a (side of square) by Pythagoras theorem
    1. Using Thales theorem and then similar triangles to get a
    2. Using sides of right-angled triangle to get cosBAC then Thales theorem to get r and then a
    3. Using intersecting chords theorem to get a

    • @PreMath
      @PreMath  7 месяцев назад

      Super!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @unknownidentity2846
    @unknownidentity2846 7 месяцев назад +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Since OEDP is a square, all interior angles are right angles. Therefore the triangle ODE is a right triangle and we can apply the Pythagorean theorem. With r being the radius of the semicircle and s being the side length of the square we obtain:
    OD² = OE² + DE²
    r² = s² + s² = 2*s²
    According to Thales theorem the triangle ABC is a right triangle. The triangle OAP is also a right triangle. Now let's have a look at the interior angles of these two triangles:
    ∠AOP = ∠ACB = 90°
    ∠OAP = ∠BAC = α
    ∠APO = ∠ABC = β
    So these two triangles are similar and we can conclude:
    AO/AP = AC/AB
    r/AP = 32/(2*r)
    r/AP = 16/r
    AP/r = r/16
    ⇒ AP = r²/16
    Now we can apply the Pythagorean theorem to the right triangle OAP in order to obtain the area of the square:
    AP² = AO² + OP²
    (r²/16)² = r² + s²
    (2*s²/16)² = 2*s² + s²
    (s²/8)² = 3*s²
    s⁴/64 = 3*s²
    Since s=0 is not a useful solution, the only useful solution is:
    A(square) = s² = 3*64 = 192
    Best regards from Germany

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 7 месяцев назад +2

    Diagonal of the square = radius of circle =a√2
    AP =√[ (a√2)^2 +a^2]=a√3
    DP is extended to T to get a chord.
    Now intersecting chord theorem states that
    DP *PT =AP *PC -- (1)
    (DP =PT =a)
    AP=a√3
    PC= 32 - a√3
    Now from equation No. 1 we get
    a^2= a √3(32 - a√3)
    > 4a^2=32a√3
    > 4a =32√3
    > a=8√3
    a^2=(8√3)^2=64*3=192
    Area of square = 192 sq units
    Comment please

    • @PreMath
      @PreMath  7 месяцев назад

      Good job!
      Thanks for sharing ❤️

  • @phungpham1725
    @phungpham1725 7 месяцев назад +1

    Thank you so much!
    My first attempt was almost the same as yours😅!
    Here is my 2nd approach:
    Let a and r be the side of the square and the radius of the circle respectively.
    We have: r= a. sqrt2
    So tan angle CAB= OP/OA=a/r=1/(sqrt2)
    Note that the angle ACB= 90 degrees so, BC/AC=tan(CAB)=1/sqrt2
    --> BC=16sqrt2
    By using the Pythagorean theorem
    sqAC+sqBC=sqAB
    -> sq32+sq(16sqrt2)=sq(2r)=sq(2.a.sqrt2)
    --> 8 sqa=512+1024
    Area= sq a=192 sq units

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @sergeyvinns931
    @sergeyvinns931 7 месяцев назад +2

    R=x\/2, ВС/32=х/х\/2, ВС=32/\/2=16\/2, (2R)^2=32^2+(16\/2)^2, (2x\/2)^2=1024+512, 8x^2=1536, x^2=1536/8, x^2=192.

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @himo3485
    @himo3485 7 месяцев назад +1

    PO=OE=ED=DP=x OD=AO=OB=√2x
    ⊿AOP∞⊿ACB BC=32/√2=16√2
    AB=2√2x (16√2)²+32²=(2√2x)² 512+1024=8x² 8x²=1536
    x² = Blue Square area = 192

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @phungpham1725
    @phungpham1725 7 месяцев назад +1

    3rd alternative solution:
    1/ Just assume that a=1 so r= sqrt2 and AP= sqrt3 and area of blue square= 1
    2/ The quadrilateral PCBO is cyclic so,
    APxAC=AOxAB-->ACxsqrt3=sqrt2x2sqrt2=4--> AC=4/sqrt3
    Now if AC = 32, the area of the blue square = 1x sq((32/(4/sqrt3))=64x3= 192 sq units😊

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @michaelkouzmin281
    @michaelkouzmin281 7 месяцев назад +1

    One more solution:
    1. Let a= OP=PD; x=AP; PC = 32-x;
    2. Let us extend DP to the left to intersect with the circle at point N => PN = PD = a;
    3. PN*PD = x*(32-x) => a^2 = x*(32-x); (1)
    4. x^2 = r^2 + a^2; (2)
    5. r^2 = 2*a^2; (3)
    6. system of equations {(1),(2),(3)}
    7. let us put (3) into (2): x^2 = 3*a^2 => x = a*sqrt(3); (4)
    8. Let us put (4) into (1):
    a^2=a*sqrt(3)*(32-a*sqrt(3));
    as a!=0 lets devide both sides by a
    a = 32*sqrt(3) - 3*a;
    4a = 32*sqrt(3);
    a= 8*sqrt(3);
    Ablue = a^2 = (8*sqrt(3))^2 = 64*3 = 192 sq units.

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 7 месяцев назад +1

    32/2r=r/√(r^2+l^2)...l,lato del quadrato..con r=√2l..sostiisco, risulta l=8√3...A=192

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @emilioricou
    @emilioricou 7 месяцев назад +1

    Ok, muy bien

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for the feedback ❤️

  • @quigonkenny
    @quigonkenny 7 месяцев назад +1

    Let the radius of semicircle O be r and the side length of square OPDE be s. Draw radius OD. As OD is also the diagonal of square OPDE, this gives us a direct relationship between s and r via Pythagoras:
    Triangle ∆OPD:
    OP² + PD² = OD²
    s² + s² = r²
    2s² = r²
    s² = r²/2
    s = √(r²/2) = r/√2 --- [1]
    r = √2s --- [2]
    Draw CB. By Thales' Theorem, as A and B are opposite ends of a diameter and C is a point on the circumference, then ∠BCA = 90°. As ∠AOP = 90° as well, and ∠PAO is common, triangles ∆AOP and ∆BCA are similar.
    Triangle ∆BCA:
    BC/CA = OP/OA
    BC/32 = s/r = (r/√2)/r --- [1]
    BC = 32/√2 = 16√2
    BC² + CA² = AB²
    (16√2)² + 32² = (2r)² = (2(√2s))² --- [2]
    8s² = 512 + 1024 = 1536
    s² = 1536/8 = 192 sq units

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @prossvay8744
    @prossvay8744 7 месяцев назад +1

    OBDP is a square
    So OB=BD=DP=PO=x
    And OD is Radius of semicircle =x√2
    ∆ AOP~ ∆ ACB
    x/x√2=BC/32
    1/√2=BC/32
    So BC=16√2
    In ∆ ABC
    (16√2)^2+(32)^2=(2x√2)^2
    So x=8√3
    Blue square area =(8√3)^2=192 square units.❤❤❤

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @golddddus
    @golddddus 7 месяцев назад

    PreMath likes square roots a lot. And when it should and when it shouldn't. Let's ban square roots! OD^2=2a^2. AP^2=3a^2. (AB^2)/(AC^2)=(AP^2)/(AO)^2.
    (8a^2)/32^2=(3a^2)/2a^2. a^2/64=2. a^2=192 square units.😎

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️
      Thanks for the feedback ❤️

  • @muntasirstudent1746
    @muntasirstudent1746 6 месяцев назад

    chord theorem wouldmake it simpler

  • @wackojacko3962
    @wackojacko3962 7 месяцев назад +1

    I guess when I think outside the box I'm really looking for a distant function I project onto the space in question. 🤔

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent! 😀
      Thanks for the feedback ❤️

  • @Birol731
    @Birol731 7 месяцев назад +1

    My way of solution ▶
    Since this is a semicircle, if we consider the triangle ΔABC, then ∠ BCA= 90°
    OE=ED=DP=PO= a
    AD= r

    a√2= r
    a= √2 r/2
    ΔABC ~ ΔAPO
    AP= x
    OP= a
    OP= √2 r/2
    BC= y
    CA= 32

    OP/BC= AO/CA= PA/AB
    a/y= x/2r= r/32

    √2 r/2 / y= r/32
    y= 16√2
    BC= 16√2
    BC²+CA²= AB²
    BC= 16√2
    CA= 32
    AB= 2r

    (16√2)²+32²= (2r)²
    256*2+1024= 4r²
    1536= 4r²
    r²= 384
    Ablue= a²
    = (√2 r/2)²
    = 2r²/4
    = r²/2
    Ablue= 384/2
    Ablue= 192 square units

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 7 месяцев назад +1

    Congratulations for the question sir!!

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @jamestalbott4499
    @jamestalbott4499 7 месяцев назад +1

    Thank you!

    • @PreMath
      @PreMath  7 месяцев назад

      You are very welcome!
      Thanks ❤️

  • @KenCunkle
    @KenCunkle 6 месяцев назад

    Okay, I'm dazzled.

  • @adgf1x
    @adgf1x Месяц назад

    192 squard.

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 7 месяцев назад +1

    STEP-BY-STEP TRIGONOMETRICAL RESOLUTION PROPOSAL :
    01) Square Side = X
    02) Square Diagonal = X*sqrt(2)
    03) Radius of Semicircle = Square Diagonal = X*sqrt(2)
    04) Angle (OAP) = a and Angle (OPA) = b. aº + bº = 90º
    05) tan(a) = X / X*sqrt(2) ; tan(a) = 1/sqrt(2) ; tan(a) = sqrt(2)/2
    06) tan(b) = X*sqrt(2)/X ; tan(b) = sqrt(2)
    07) sin^2 (a) = 1/3 and cos^2 (a) = 2/3
    08) sin(a) = sqrt(3)/3 and cos(a) = sqrt(6)/3
    08) BC / 32 = tan(a) ; BC / 32 = sqrt(2)/2 ; BC = (32*sqrt(2))/2 ; BC = 16*sqrt(2) ; BC ~ 22,63
    09) Finding Diameter AB (2R) :
    10) AB^2 = AC^2 + BC^2 ; AB^2 = 1.024 + 512 ; AB^2 = 1.536 ; AB = sqrt(1.536) ; AB (2R) = 16*sqrt(6)
    11) Radius = 8*sqrt(6)
    12) As stated above : Radius of Semicircle = Square Diagonal = X*sqrt(2)
    13) R = X*sqrt(2)
    14) So : X*sqrt(2) = 8*sqrt(6)
    15) X = (8*sqrt(6)) / sqrt(2))
    16) Blue Square Area = X^2
    18) X^2 = 64*6 / 2 ; X^2 = 384 / 2 ; X^2 = 192
    ANSWER : The Blue Square Area equal to 192 Square Units.
    Best Regards from The Universal Islamic Institute for Study of Ancient Mathematical Thinking, Knowledge and Wisdom in Cordoba Caliphate.

    • @PreMath
      @PreMath  7 месяцев назад +1

      Excellent!
      Glad to hear that!
      Thanks for sharing ❤️

  • @sergeyvinns931
    @sergeyvinns931 7 месяцев назад

    Прошу прощения, но эту задачу я уже решал на этой самой русской олимпиаде у Казакова!

    • @PreMath
      @PreMath  7 месяцев назад

      Thanks for the feedback ❤️

  • @rorydaulton6858
    @rorydaulton6858 7 месяцев назад +1

    Nice problem and solution! I solved it differently, using analytic geometry, but your way was much more elegant.
    You pronounced the Greek mathematician as "thails" but it should be pronounced "thay-leez". That is two syllables. For confirmation, see ruclips.net/video/8jCY1GZmdx4/видео.html.

    • @PreMath
      @PreMath  7 месяцев назад

      Excellent!
      Thanks for the feedback ❤️