Can you calculate the value of X? | (Isosceles Trapezoid) |

Поделиться
HTML-код
  • Опубликовано: 3 фев 2025

Комментарии • 60

  • @SaurabhYadav-hr9nk
    @SaurabhYadav-hr9nk 9 часов назад +1

    Please keep ❤

    • @PreMath
      @PreMath  5 часов назад +1

      Thanks dear❤️🙏

  • @abstragic4216
    @abstragic4216 8 часов назад +8

    I didn't need Pythagorus, because there is no need to know the length of BC or of CE. Triangles ABC and ACE are similar, so AC/AB=3/9=AE/AC which means AE = AC/3 = 1.

    • @scottdort7197
      @scottdort7197 5 часов назад +1

      I totally agree. Pythagorus is kind of an unnecessary step. One third of 9 is 3. One third of three is one. 1 x 2 = 2. 9 - 2 = 7. Done.

    • @PreMath
      @PreMath  5 часов назад +1

      Thanks for the feedback ❤️🙏

    • @ASINGH-li8eq
      @ASINGH-li8eq Час назад

      excellant very quick ​@@scottdort7197

  • @AzouzNacir
    @AzouzNacir 9 часов назад +5

    Let H be the perpendicular projection of point C on line AB. We have AH=(9-x)/2. In right triangle ABC, let AH*AB=AC². From this, ((9-x)/2)*9=9. Therefore, x=7.

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @jimlocke9320
    @jimlocke9320 5 часов назад +2

    Extend AC up by length 3. Label the end point E, so CE = 3. Construct BC and BE. Note that ΔACB and ΔECB are congruent by side - angle - side. Therefore, BE = AB = 9. Let the point of intersection of BE with the half circle be F. Note that ∠ABC and ∠CBE are equal because ΔACB and ΔECB are congruent. Construct CF. ∠CBF = ∠CBE = ∠ABC . Because inscribed angles ∠CBF and ∠ABC have the same measure, the arcs they subtend, AC and CF, are congruent. The chords that subtend those arcs must be equal, so length CF = AC = 3. Arc BF has the same measure as arc CD, so the chords CD and BF have the same length, x. BE is a secant with length 9 and external segment EF = BE - BF = 9 - x. AE is a secant with length AC + CE = 3 + 3 = 6 and external segment CE = 3. Apply the secant - secant theorem: (CE)(AE) = (EF)(BF), (3)(6) = (9 - x)(9), 18 = 81 - 9x, 9x = 63 and x = 7, as PreMath also found.

    • @PreMath
      @PreMath  4 часа назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @jamestalbott4499
    @jamestalbott4499 5 часов назад +1

    Thank you!

    • @PreMath
      @PreMath  5 часов назад

      Thanks for watching! 🙏

  • @zupitoxyt
    @zupitoxyt 9 часов назад +2

    Epic as always

    • @PreMath
      @PreMath  5 часов назад

      Glad to hear that!
      Thanks for the feedback ❤️🙏

  • @alexniklas8777
    @alexniklas8777 7 часов назад +1

    Decided like you.
    Thanks sir!

    • @PreMath
      @PreMath  5 часов назад

      Glad I could help! 😊
      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @Claudio_Bruzzone
    @Claudio_Bruzzone 8 часов назад +1

    You can use Ptolemy's Theorem and everything becomes very simple:
    AD*BC = AC*BD+AB*CD
    Being AD*BC = AD² = AB²-DB², we have
    9²-3² = 3*3 + 9*x;
    72 = 9 + 9x;
    63 = 9x
    x = 7

    • @PreMath
      @PreMath  5 часов назад +1

      Excellent!
      Thanks for sharing ❤️🙏

  • @georgebliss964
    @georgebliss964 8 часов назад +2

    Joining O to C.
    OC = 4.5, AO = 4.5.
    Triangle AOC cosine formula.
    3^2 = 4.5^2 + 4.5^2 - 2 * 4.5 * 4.5 * cos AOC.
    9 = 40.5 - 40.5 cos AOC.
    Cos AOC = 31.5 / 40.5.
    Raise perpendicular from point O to ctr. of CD at point P.
    Then angle OCP = angle AOC.
    Therefore cos OCP = 31.5 /40.5.
    Cos OCP = (x / 2) / 4.5.
    31.5 / 40.5 = x / 9.
    x = 31.5 / 40.5 * 9.
    x = 7.

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @santiagoarosam430
    @santiagoarosam430 9 часов назад +1

    Altura del trapezoide =h : Radio del semicírculo =r=9/2 ---> AD=√(9²-3²)=6√2 ---> Área ABD=3*6√2/2 = 9h/2---> h=2√2 ---> (x/2)²=(r+h)*(r-h) ---> x=7.
    Gracias y un saludo cordial.

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @sakurayayoi-p2r
    @sakurayayoi-p2r 8 часов назад +1

    別解法 oE=x/2。三角形AOEで三平方の定理を使い、(X/2)二乗+hh=9*9 1式。三角形CAOで(9-X/2)二乗+hh=3*3 2式。1式-2式より、9x=6*12。X=8ともとまる。

    • @PreMath
      @PreMath  5 часов назад

      Thanks for the feedback ❤️🙏

  • @RK-tf8pq
    @RK-tf8pq 2 часа назад

    Another way to do is, since CE is perpendicular to AB, we can say that CE**2 = y * (9-y) or 9y-y**2. And CE**2 is also equal to 9 - y**2 (from the right angle triangle ACE). Thus 9y - y**2 = 9 -y**2. So 9y = 9. And thus y = 1

  • @unknownidentity2846
    @unknownidentity2846 8 часов назад +2

    Let's find x:
    .
    ..
    ...
    ....
    .....
    Let M be the midpoint of CD. Since OCD is an isosceles triangle, the two triangles OCM and ODM are congruent right triangles and we can apply the Pythagorean theorem. With r being the radius of the semicircle we obtain:
    OC² = OM² + CM² = OM² + (CD/2)² = OM² + (x/2)² = OM² + x²/4 ⇒ OM² = OC² − x²/4 = r² − x²/4
    Now let's add point E on AB such that OECM is a rectangle. In this case ACE is a right triangle and we can apply the Pythagorean theorem again:
    AC² = AE² + CE² = AE² + OM² = (OA − OE)² + OM² = (OA − CM)² + OM² = (r − x/2)² + OM² = r² − rx + x²/4 + OM²
    ⇒ OM² = AC² − (r² − rx + x²/4) = 3² − r² + rx − x²/4 = 9 − r² + rx − x²/4
    Now we are able to calculate the value of x:
    OM² = r² − x²/4 = 9 − r² + rx − x²/4
    2r² − 9 = rx
    ⇒ x = (2r² − 9)/r = [2(AB/2)² − 9]/(AB/2) = (2*AB²/4 − 9)/(AB/2) = (AB² − 2*9)/AB = (9² − 18)/9 = (81 − 18)/9 = 63/9 = 7
    Best regards from Germany

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @zdrastvutye
    @zdrastvutye Час назад

    it is a system of 2 nonlinear equations:
    10 print "premath-can you calculate the value of x trapezoid feb2025":dim x(3),y(3)
    20 l1=9:l2=3:r=l1/2:la=l2:lb=r:lc=r:lh=(la^2-lb^2+lc^2)/2/lc
    30 h=sqr(la^2-lh^2):lx=2*(r-lh):print "x=";lx
    40 x(0)=0:y(0)=0:x(1)=l1:y(1)=0:x(2)=2*r-lh:y(2)=h:x(3)=lh:y(3)=h
    50 masx=1200/2/r:masy=850/r:if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @marcgriselhubert3915
    @marcgriselhubert3915 9 часов назад +1

    We use an orthonormal center O and first axis (OB). We name t =angleBOD. Then D((9/2).cos(t); (9/2).sin(t)) and B((9/2); 0)
    VectorBD((9/2).(cos(t) -1): (9/2).sin(t) and BD^2 = (81/4).[(cos(t)^2 -2.cos(t) +1 +(sin(t)^2] = (81/4). [2 - 2.cos(t)] = (81/4).[4.(sin(t/2)^2]
    Then BD = (9/2).(2.sin(t/2)) = 9.sin(t/2). As we know that BD = 3, we then have sin(t/2) = 1/3 and then cos(t) = 1 - 2.(sin(t/2))^2 = 1 - (2/9) = 7/9
    The absissa of D is (9/2).cos(t) = (9/2).(7/9) = 7/2, and x is twice this value, so x = 7

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @marcgriselhubert3915
    @marcgriselhubert3915 9 часов назад +1

    Another method:
    When we have CB = 6.sqrt(2) just as you did (with the Pytagorean theorem in triangle ACB, as you did), we also have AD = 6.sqrt(2) by symetry.
    Now we use the Ptolemy theorem in ABCD which is inscripted in a circle: AC.BD + AB.CD = BC.AD, so 3.3 + 9.x = (6.sqrt(2)).(6.sqrt(2)),
    so 9 + 9.x = 72 and then 9x = 33 and x = 7

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @AndreyDanilkin
    @AndreyDanilkin 8 часов назад

    triangle OAC-4.5, 3, 4.5 ~ triangle ACA` - 3, y, 3 -> 3/4.5 = y/3 -> y=2 ; x=9-y=7

    • @PreMath
      @PreMath  5 часов назад

      Thanks for sharing ❤️🙏

  • @cyruschang1904
    @cyruschang1904 9 часов назад +2

    √{3^2 - [(9/2)^2 - (x/2)^2]} + x/2 = 9/2
    9 - 81/4 + (x^2)/4 = 81/4 - 9x/2 + (x^2)/4
    9x/2 = 81/2 - 9
    x/2 = 9/2 - 1 = 7/2
    x = 7

    • @PreMath
      @PreMath  5 часов назад +1

      Excellent!
      Thanks for sharing ❤️🙏

    • @cyruschang1904
      @cyruschang1904 3 часа назад

      @ Thank you 😊

  • @quigonkenny
    @quigonkenny 6 часов назад +1

    Draw AD. By Thales' Theorem, as A and B are ends of a diameter and D is a point on the circumference, then ∠BDA = 90°. We can use Pythagoras to find the length of AD, but frankly it's unnecessary. All we need to know is that ∆BDA is a right triangle.
    Drop a perpendicular from D to E on AB. If ∠DAB = α and ∠ABD = 90°-α = β, then as ∠DEB = 90°, then ∠BDE = 90°-β = α. ∆BDA and ∆DEB are thus similar by AAA.
    AB/BD = BD/EB
    9/3 = 3/EB
    9EB = 9
    EB = 1
    Drop another perpendicular from C to F on AB. As FE and BC are parallel, and as DE and CF are both perpendicular to FE and BC and thus parallel to each other, and as ∠FED = ∠EDC = ∠DCF = ∠CFE = 90°, then FEDC is a rectangle, CF = DE and FE = DC = x.
    As BD = CA, DE = EF, and ∠CAF = ∠EBD, then ∆DEB and ∆AFC are congruent. AF = EB = 1.
    AB = AF + FE + EB
    9 = 1 + x + 1 = x + 2
    [ x = 9 - 2 = 7 units ]

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @johnbrennan3372
    @johnbrennan3372 8 часов назад +1

    AE= (9-x)/2. AC=3 therefore CE= sqroot [ 9-( 9-x )/2)^2)]. Then using pythag. X=7.

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @robertlynch7520
    @robertlynch7520 2 часа назад

    I've said it before ... and I'm not sure why its always forgotten, but here it is again: for right triangles, the line H is always
    H = AB/C where C is hypotenuse
    As simple as that looks, it always holds true, and is even fairly easy to prove. Moreover, the part of C on the A side is AA/C and the part of C on the B side is BB/C. Always.
    So using Thale's theorem, A = 3, B = sqrt(9^2 - 3^2) = sqrt(72), and C = 9, the given.
    X will be C (9) minus two of the "parts of C on the A side", or
    X = 9 - (2AA/C) = 9 - (2 * 3 * 3 / 9) = 9 - 18/9 = 9 - 2 = 7
    And that's that. Just remember those 3 identities for right triangles and their height
    H = AB/C, (A bit of C) = AA/C, and (B bit of C) = BB/C
    I didn't use the square symbol because by not using it, the trio is much easier to visually remember.
    GoatGuy

  • @鈞齊
    @鈞齊 4 часа назад

    Suppose that P on AB such that CP//DB
    then we have CD=BP=AB-AP
    We know that AB=9
    Goal: Find AP
    Notice that ∆OAC~∆CAP(AA)
    then (9/2):3=3:AP => AP=2
    Thus CD=7

  • @alexundre8745
    @alexundre8745 9 часов назад +1

    Bom dia Mestre

    • @PreMath
      @PreMath  5 часов назад

      Hello dear😀
      Thanks ❤️🙏

  • @michaelkouzmin281
    @michaelkouzmin281 Час назад

    Just another solution (with excess of trigonometry :)))) :
    1. CD = 6*sqrt(2) according to the Thales and Pythagorean theorems;
    2. Let a = alpha = angle CAB, then ABC = DCB = D90-a and CDB = D180-a, CBD = D180-(D90-a) -(D180-a) = 2a-D90;
    3. Let us apply cosine theorem to triangle ABC:
    CB^2 = AC^2 + AB^2 - 2*AB*BC*cos(a) => cos(a) = ( CB^2 - (AC^2 + AB^2))/( 2*AB*BC) = (72 - 9 -81)/(-54) = 1/3;
    4. Let us apply sine theorem to triangle CBD:
    CB/sin(CDB) = x/sin(CBD) ;
    x = CB*sin(CBD)/sin(CDB) =
    =6*sqrt(2) * sin(2a-D90)/sin(D180-a) =
    = 6*sqrt(2) *(sin(2a)*cos(D90)-cos(2a)*sin(D90))/sin(a)=
    = 6*sqrt(2)* (-cos(2a)/sin(a)) =
    = 6*sqrt(2)*(1-2*(cos(a))^2)/sqrt(1-(cos(a))^2) =
    =6*sqrt(2)*(1-2*(1/3)^2)/sqrt(1-(1/3)^2) =
    = 6*sqrt(2)*(1-2/9)/sqrt(1-1/9) =
    =6*sqrt(2)*(7/9)/sqrt(8/9) =
    = 7 linear units.

  • @jesuscarralero1949
    @jesuscarralero1949 7 часов назад

    Teorema de Ptolomeo. Producto de las diagonales igual a 9x+9

    • @PreMath
      @PreMath  5 часов назад

      Thanks for the feedback ❤️🙏

  • @AmirgabYT2185
    @AmirgabYT2185 8 часов назад +2

    x=7

    • @PreMath
      @PreMath  5 часов назад +1

      Excellent!
      Thanks for sharing ❤️🙏

  • @McFribble-m2t
    @McFribble-m2t 3 часа назад

    let A be the center of a coordinate system (x-axis along AB)
    P(x,y) x^2 + y^2 =3^2 = 9
    p(x,y) is also on the circle- (x-4.5)^2+y^2=4,5^2
    x^2+2*4.5*x+4.5^2+y^2=4.5^2
    x^2+y^2-9x=0
    9-9x=0
    x=1 this x is not the questioned x
    so CD (the answer) = 9-(2*x)=7

  • @nenetstree914
    @nenetstree914 7 часов назад +1

    7

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @LucasBritoBJJ
    @LucasBritoBJJ 6 часов назад

    Não precisa saber o valor de CB
    Da pra fazer por similaridade
    Tracando a linha perpendicular partindo de C até AB, temos o ponto É
    O triângulo ABC é congruente ao triângulo ACE, de forma que podemos achar a razão das hipotenusas e cateto menor
    3/9=AE/3
    AE = 1
    X = 7
    Dá para usar tbm h^2=mn e pitagoras no triângulo ACE para achar:
    m=AE
    n=EB
    h=CE
    h^2=m(9-m)
    h^2+m^2=3^2
    Comparando h^2, temos
    m(9-m)=9-m^2
    m=1

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @sergioaiex3966
    @sergioaiex3966 3 часа назад

    Solution:
    Since we are dealing with an isosceles trapezoid, let's label the lengths
    AE = a
    AO = r = 9/2
    CE = h
    Applying Pythagorean Theorem in ∆ ACE, it will be:
    AE² + CE² = AC²
    (a)² + (h)² = (3)²
    a² + h² = 9 ... ¹
    Once again, applying Pythagorean Theorem in ∆ CEO, it will be:
    EO = r - a = 9/2 - a
    EO² + CE² = CO²
    (9/2 - a)² + (h)² = (9/2)²
    81/4 - 9a + a² + h² = 81/4
    a² + h² - 9a = 0 ... ²
    Replacing Equation ¹ in Equation ², it will be:
    9 - 9a = 0
    9a = 9
    a = 1
    Replacing "a = 1" in Equation ¹, to calculate "h", it will be:
    (1)² + (h)² = (3)²
    1 + h² = 9
    h² = 8
    h = 2√2
    Finally, applying Pythagorean Theorem in ∆ CGO, such that "G" is CD midpoint, it will be:
    CG² + GO² = CO²
    (x/2)² + (2√2)² = (9/2)²
    x²/4 + 8 = 81/4 (×4)
    x² + 32 = 81
    x² = 49
    x = 7
    Thus x = 7 units ✅

  • @xaviersoenen4460
    @xaviersoenen4460 2 часа назад

    r=9/2, cos(

  • @yakovspivak962
    @yakovspivak962 3 часа назад

    X = 9 - 2 × (3^2 / 9) = 7
    Yep, as simple as that !

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 6 часов назад +1

    MY RESOLUTION PROPOSAL :
    01) Drop a Vertical Line from D and find Point E between Point O and Point B. Line Segment BE = a lin un
    02) OA = OB = OB = OD = 9 / 2 = 4,5 lin un.
    03) AD^2 + BD^2 = AB^2
    04) AD^2 = AB^2 - BD^2
    05) AD^2 = 81 + 9
    06) AD^2 = 90
    07) AD = sqrt(90)
    08) Right Triangles (BDE) and (ABD) are Similar. We can use "The Principle of Proportionality".
    09) a / 3 = 3 / 9
    08) a = 9 / 9
    09) a = 1
    10) X = 9 - 2a
    11) X = 9 - 2
    12) X = 7
    MY BEST ANSWER :
    As far as my best knowledge, CD = X is equal to 7 Linear Units.

    • @PreMath
      @PreMath  5 часов назад +1

      Excellent!
      Thanks for sharing ❤️🙏