Can you calculate area of the Green shaded region? | (Circles) |

Поделиться
HTML-код
  • Опубликовано: 31 янв 2025

Комментарии • 64

  • @imetroangola17
    @imetroangola17 День назад +3

    Parabéns pelos vídeos e por trazer excelentes questões! ❤

    • @PreMath
      @PreMath  День назад +1

      Glad to hear that!
      Thanks for the feedback ❤️🙏

  • @egillandersson1780
    @egillandersson1780 День назад +6

    If you mirror all to get the big full circle, the centers of the small circles make an hexagon. So, triangle OPQ is equilateral ; therefore 2r = r - 12 => r = 4

    • @SkinnerRobot
      @SkinnerRobot День назад +1

      2r = 12 - r

    • @PreMath
      @PreMath  День назад

      Thanks for the feedback ❤️🙏

    • @Noval5s
      @Noval5s День назад

      Is there a theorem that proves them equilateral?

    • @quigonkenny
      @quigonkenny День назад +2

      ​​​@@Noval5s Don't know if there's a specific theorem per se, but a regular hexagon is made up of six equilateral triangles. Since each vertex in a regular hexagon is 60° from the next and the distances from the vertices to the center are all the same, then you have six 60° isosceles triangles. A 60° isosceles triangle is necessarily equilateral since the other two angles must also be 60°, so there you go.

    • @egillandersson1780
      @egillandersson1780 День назад

      @ Yes ! Lapsus calami. Thank you for notice.

  • @marioalb9726
    @marioalb9726 14 часов назад +1

    sin30°=r/(12-r) = 1/2
    2r = 12-r --> r = 4 cm
    A = ½πR² - 3πr²= ½π12² -3π4²
    A = 72π - 48π = 24π cm² (Solved √)

  • @jacquespictet5363
    @jacquespictet5363 День назад +5

    Making a horizontal mirror and adding the 7th small circle shows directly that R=3r.

    • @jimlocke9320
      @jimlocke9320 День назад

      You haven't proved that the 7th circle has the same radius as the 6 other circles. Any other number of circles (e. g. 4, 5, or 6) and the middle circle will not have the same radius as the other circles.

    • @Claudio_Bruzzone
      @Claudio_Bruzzone День назад +1

      @@jimlocke9320 It is easily demonstrated.
      If you join the 6 centers of the small triangles, you get a regular hexagon of side 2r. Each of the 6 triangles is equilateral, therefore OP=OQ=OT=2r...

    • @PreMath
      @PreMath  День назад

      Thanks for the feedback ❤️🙏

    • @jimlocke9320
      @jimlocke9320 18 часов назад +1

      @@Claudio_Bruzzone Yes, that is correct, thanks for the proof. jacquespictet5363 made the assumption that the 7th circle would have the same radius as the other circles, but did not prove it. With 6 circles in the large full circle, the added 7th circle in the middle will have the same radius. With more circles, you won't get a regular hexagon and the added middle circle will not have the same radius.

  • @alanthayer8797
    @alanthayer8797 23 часа назад

    VERY NIVE breakdown ! Thanks for different Solutions Daily sir !

  • @quigonkenny
    @quigonkenny День назад +1

    By mirroring the figure about AB it's clear to see that the centers of the internal circles form a regular hexagon. Therefore each of the centers is 60° from the next. As the figure is symmetrical about OD, then ∠AOT = ∠POB = (180°-120°)/2 = 30°. As AB is tangent to circles T and P at G and F respectively, and TG and PF are radii (length r) of the congruent circles T and P, then ∠TGO = ∠OFP = 90° and thus ∆TGO and ∆OFP are congruent 30-60-90 special tight triangles. As OP = 2PF and PF = PC = r, then OC = R = OP+PC = 2r+r = 3r.
    AB = 2R
    24 = 2R
    R = 24/2 = 12
    3r = 12
    r = 12/3 = 4
    Green area:
    A = πR²/2 - 3πr²
    A = π(12)²/2 - 3π(4)²
    A = 144π/2 - 3(16)π
    A = 72π - 48π
    [ A = 24π ≈ 75.398 sq units ]

  • @marcgriselhubert3915
    @marcgriselhubert3915 9 часов назад

    Fine.

  • @gaylespencer6188
    @gaylespencer6188 16 часов назад +1

    Another way. Draw a half circle equal to the r of the smaller circles. This half circle will be tangent to those three small circles. Now the distance from the center of the big half circle to the top of the big half circle is three r. If 3r = 12 then r is 4.

  • @professorrogeriocesar
    @professorrogeriocesar День назад +2

    Muito bom! Eu fiz sem precisar calcular o ângulo. Excelente, obrigado.

    • @PreMath
      @PreMath  День назад

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @johankotze42
    @johankotze42 22 часа назад +1

    Reflect the semi circle. Six small circles fitting like that into a larger circle implies a seventh small circle on the center of the large circle, all being tangent. Therefore the diameter of the large circle is: 24 = 6*r => r = 4. No trigonometry, no Pythagoras.

  • @himo3485
    @himo3485 День назад +1

    AO=OB=24/2=12 r/(12-r)=1/2 2r=12-r 3r=12 r=4
    Green shaded area = 12*12*π*1/2 - 4*4*π*3 = 24π

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @jamestalbott4499
    @jamestalbott4499 День назад +1

    Thank you!

    • @PreMath
      @PreMath  День назад

      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @AmirgabYT2185
    @AmirgabYT2185 День назад +2

    S=24π≈75,43

    • @PreMath
      @PreMath  День назад +1

      Excellent!
      Thanks for sharing ❤️🙏

  • @cyruschang1904
    @cyruschang1904 День назад

    R = 12 = 3r
    Green area = (R^2)(π/2) - (r^2)(3π) = (144/2 - 16 x 3)π = (72 - 48)π = 24π

  • @santiagoarosam430
    @santiagoarosam430 23 часа назад

    En la figura propuesta es fácil visualizar dos hexágonos regulares concéntricos; el exterior tiene lado ED=DO =24/2=12 y el interior TQ=2r=DO-r=12-r---> r=12/3=4 ---> Área sombreada verde= (π12²/2)-(3*π4²) =24π u².
    Gracias y un saludo cordial.

  • @AzouzNacir
    @AzouzNacir День назад

    Let r be the radius of the circles, from which we have (12-r)²-r²=(2r)²-(12-2r)², so r=4, and the green area is equal to π*(12)²/2-3*(π*4²)=24π

    • @jimlocke9320
      @jimlocke9320 День назад +1

      You beat me to it! To provide missing details: To derive that equation, construct OD and PT. Label the intersection as point G. Construct CD. Let PG have length x. Then, from ΔCDG, (2r)² = (12-2r)² + x² and, from ΔCGO, (12-r)² = r² + x². Solve for x² in each equation and equate the values of x² to produce the equation (12-r)²-r²=(2r)²-(12-2r)². Expand to (12)² - 24r + r² = 4r² - ((12)² - 48r + 4r²) and simplify to find r = 4.

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️🙏

    • @AzouzNacir
      @AzouzNacir День назад

      Are these simple things worth writing a newspaper about? They are repetitive and not new. I think that users know this.​@@jimlocke9320

    • @AzouzNacir
      @AzouzNacir 23 часа назад

      Are these simple things worth writing a newspaper about? They are repetitive and not new. I think that users know this.​@@jimlocke9320

    • @AzouzNacir
      @AzouzNacir 23 часа назад

      Are these simple things worth writing a newspaper about? They are repetitive and not new. I think that users know this.

  • @michaelkouzmin281
    @michaelkouzmin281 День назад

    Just another solution:
    1. Let us draw 2 auxiliary lines: OD and horizontal TV through point T where V is crosspoint of OD and TV;
    2. Let r= TG, x = GO
    Then OT = 12 -r; QV = 12 -2r; TQ = 2r
    3. So we have 2 right triangles:
    OGT: (12-r)^2 = x^2 +r^2 => x^2 = (12-r)^2 - r^2 = 144-24r (1)
    TVQ: x^2+(12-2r)^2 = (2r)^2 => x^2 = (2r)^2 - (12-2r)^2 = 48r - 144 (2)
    4. Let us compare (1)& (2) : left sides are equal:
    48r -144 = 144-24r:
    72r =288
    r = 4.
    /* x= 4sqrt(3) just for reference */
    5. A(semicirc) = pi*D^2(4*2) = 72*pi;
    A(white) = 3*pi*r^2 = 2*pi*3^2 = 48*pi;
    A(green) = 72*pi-48*pi = 24*pi sq units.

  • @sventheviking4635
    @sventheviking4635 День назад

    OTQP form a rhombus of sides of equal length so OP=PQ=2r, so radius =3r

  • @Claudio_Bruzzone
    @Claudio_Bruzzone День назад

    No calculation is needed.
    Given the symmetry of the configuration, if the circumference is completed with the other 3 smaller circles, the only possible and compatible configuration is that of 7 small tangent circles (6 external and one internal with center in the center of the large circumference).
    Therefore trivially:
    r = D/6 = 24/6 = 4
    The green area follows:
    72π - 3*16π = 24π u²
    In fact, if you join all the centers of the small circles, you obtain a regular hexagon which, having a side equal to the radius of the circumscribed circle, such radius can only be 2r, and therefore r=1/3R.

    • @PreMath
      @PreMath  День назад

      Thanks for the feedback ❤️🙏

  • @sabinafacondo1638
    @sabinafacondo1638 День назад

    Si calcola l'area del semicerchio,(conoscendo la diagonale). Si calcolano le aree dei 3 cerchi inscritti(deducendo le diagonali). Si sottraggono dall'area del semicerchio 226,08,le aree dei 3 cerchi 150,72. Risultato 75,36.

  • @SaurabhYadav-hr9nk
    @SaurabhYadav-hr9nk День назад +1

    please keep

    • @PreMath
      @PreMath  День назад

      Thanks for the feedback ❤️🙏

  • @lwels49
    @lwels49 18 часов назад

    The line OD must be 3 times radius of small circle. So r equals 4. Etc

  • @unknownidentity2846
    @unknownidentity2846 День назад +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    The white circle in the middle has exactly one point of intersection with the white circle on the left and with the white circle on the right. So with r being the radius of the white circles we can conclude:
    PQ = QT = 2r
    The semicircle has exactly one point of intersection with each of the white circles. Therefore with R being the radius of the semicircle we obtain:
    OP = OC − PC = R − r
    OQ = OD − QD = R − r
    OT = OE − TE = R − r
    The triangles OPT and PQT are isosceles triangles (OP=OT and PQ=QT). So with M being the midpoint of PT we obtain two pairs of congruent right triangles: OMP/OMT and MPQ/MQT. By applying the Pythagorean theorem to the right triangles OMP and MPQ we obtain:
    OP² = OM² + PM²
    PQ² = QM² + PM²
    OP² − PQ² = OM² − QM²
    OP² − PQ² = OM² − (OD − OM − QD)²
    OP² − PQ² = PF² − (OD − PF − QD)²
    (R − r)² − (2r)² = r² − (R − r − r)²
    (R − r)² − (2r)² = r² − (R − 2r)²
    R² − 2Rr + r² − 4r² = r² − (R² − 4Rr + 4r²)
    R² − 2Rr + r² − 4r² = r² − R² + 4Rr − 4r²
    2R² = 6Rr
    R = 3r
    ⇒ r = R/3 = (AB/2)/3 = (24/2)/3 = 12/3 = 4
    Now we are able to calculate the area of the green region:
    A(green) = A(semicirle) − A(white circles) = πR²/2 − 3πr² = π*12²/2 − 3π*4² = 72π − 48π = 24π
    Best regards from Germany

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️🙏

    • @johankotze42
      @johankotze42 22 часа назад

      This looks like an AI generated solution. 😀

    • @unknownidentity2846
      @unknownidentity2846 8 часов назад

      @@johankotze42 I can assure you that my solutions are always HI generated (HI = human intelligence).🙂
      Best regards from Germany

    • @unknownidentity2846
      @unknownidentity2846 6 часов назад

      @@johankotze42 I can assure you that my solutions are HI generated (HI = human intelligence).🙂
      Best regards from Germany

  • @brettgbarnes
    @brettgbarnes 2 минуты назад

    OG² = OT² - TG²
    OG² = (12 - r)² - r²
    OG² = (144 - 24r + r²) - r²
    -------------------------------------
    OG² = 144 - 24r
    -------------------------------------
    OG² = TQ² - (12 - QD - TG)²
    OG² = (r + r)² - (12 - r - r)²
    OG² = (2r)² - (12 - 2r)²
    OG² = 4r² - (144 - 48r + 4r²)
    -------------------------------------
    OG² = 48r - 144
    -------------------------------------
    48r - 144 = 144 - 24r
    72r = 288
    -------------------------------------
    r = 4
    -------------------------------------

  • @MohamedMd-l5d
    @MohamedMd-l5d 23 часа назад

    Why angle equal 60 degrés please with explain

    • @dantallman5345
      @dantallman5345 13 часов назад

      Since the small circles are all equal, he drew tangent lines to them from the midpoint of the semicircle diameter, thus dividing the semicircle into three equal wedges (180 degrees /3=60 degrees).

  • @giuseppemalaguti435
    @giuseppemalaguti435 День назад +1

    OP=b,R=12...risultano due equazioni 12=2r+√((2r)^2-b^2)...12=r+√(r^2+b^2)...(12-2r)^2=4r^2-b^2,(12-r)^2=r^2+b^2...[sommo le equazioni]...288=72r=>r=4...Agreen=π(12)^2/2-3π4^2=π(72-48)=24π

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @Christopher-e7o
    @Christopher-e7o 20 часов назад

    X,2x+5=8

  • @nenetstree914
    @nenetstree914 День назад +1

    24PI

    • @PreMath
      @PreMath  День назад

      Excellent!
      Thanks for sharing ❤️🙏

  • @wackojacko3962
    @wackojacko3962 День назад +1

    When I call customer service, I don't press one for English, I don't press two for diphthongs, and I don't press three for ululation. I press four to SOHCAHTOA! 😊

    • @PreMath
      @PreMath  День назад

      😀
      Thanks for sharing ❤️🙏

  • @sergioaiex3966
    @sergioaiex3966 20 часов назад

    Solution:
    We must find the radius "r" to solve this question
    Applying Pythagorean Theorem in ∆FOP, we will have:
    OF² + r² = (12 - r)²
    OF² + r² = 144 - 24r + r²
    OF = √(144 - 24r)
    Applying, once again, Pythagorean Theorem in ∆PQW, such that W is the midpoint in the line PT
    [√(144 - 24r)]² + (12 - 2r)² = (2r)²
    144 - 24r + 144 - 48r + 4r² = 4r²
    144 - 24r + 144 - 48r = 0
    288 - 72r = 0
    72r = 288
    r = 4
    White Region Area = 3 × π (4)²
    WRA = 48π
    Green Shaded Area = ½ π (12)² - 48π
    GSA = 72π - 48π
    GSA = 24π Square Units ✅
    GSA ≈ 75.3982 Square Units ✅

  • @texitaliano64
    @texitaliano64 6 часов назад

    Il semicerchio di diametro D=24 ha raggio R=D/2=12
    R=12
    chiamiamo O il centro dellla semicirconferenza
    chiamiamo O1 il centro del primo cerchio inscritto a sinistra
    chiamiamo O2 il centro del secondo cerchio inscritto a destra
    chiamiamo O3 il centro del terzo cerchio inscritto in alto
    chiamo 2*a la distanza O1O2
    con pitagora considero il triangolo rettangolo O1KO3 dove K è il punto medio di O1O2
    a=sqrt((r+r)^2-(R-r-r)^2
    a=sqrt((2*r)^2-(R-2*r)^2)
    a=sqrt((2*r)^2-(R^2+(2*r)^2-2*R*2*r))
    a=sqrt(4*R*r-R^2)
    a=sqrt(4*12*r-12^2)
    a=sqrt(48*r-144)
    a=sqrt(48*(r-3))
    con pitagora considero il triangolo rettangolo O1KO dove K è il punto medio di O1O2
    a=sqrt((R-r)^2-r^2)
    a=sqrt(R^2+r^2-2*R*r-r^2)
    a=sqrt(12^2-24*r)
    a=sqrt(144-24*r)
    a=sqrt(24*(6-r))
    uguagliando a=a otteniamo
    sqrt(24*(6-r))=sqrt(48*(r-3))
    sqrt(144-24*r)=sqrt(48*r-144)
    eleviamo al quadrato entrambi
    144-24*r=48*r-144
    144+144-24*r-48*r=0
    288-72*r=0
    288=72*r
    r=288/72
    r=4
    La superficie della semicirconferenza è
    Ss=(pi*D^2)/4/2
    Ss=72*pi
    La superficie di ciascuna circonferenza inscritta è
    So=pi*r^2
    So=pi*4^2
    So=16*pi
    Ora facciamo la differenza per trovare l'area richiesta
    S=Ss-3*So
    S=72*pi-3*16*pi
    S=72*pi-48*pi
    S=(72-48)*pi
    S=24*pi

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho День назад +1

    MY RESOLUTION PROPOSAL :
    01) TG = r
    02) TQ = 2r
    03) Let's drop a Line between Point O and Point D. OD = R = 12
    04) Let's draw an Isoscles Triangle [PQT) with Sides (TQ ; PQ ; TP) and with TQ = PQ
    05) Let's divide Line OD in 3 different segments : OD (R) = OQ'(r) + Q'Q + QD (r). Q' is the Middle Point between Side TP.
    06) R = r + Q'Q + r
    07) 12 = 2r + Q'Q
    08) Q'Q = (12 - 2r)
    09) Let's give a call to Mr. Pythagoras !!
    10) Let's draw a Rectangle [OFPQ']
    11) OF^2 = OP^2 - FP^2 ; OF^2 = (12 - r)^2 - r^2 ; OF^2 = 144 - 24r + r^2 - r^2 ; OF^2 = (144 - 24r)
    12) OF'^2 = Q'P^2
    13) (12 - 2r)^2 + (144 - 24r) = 4r^2
    14) Only one Solution r = 4
    15) Green Shaded Area = 72 * Pi - (3 * (16 * Pi))
    16) GSA =72 * Pi - 48 * Pi
    17) GSA = 24 * Pi
    MY BEST ANSWER IS :
    Green Shaded Area equal 24Pi Square Units or approx. equal to 75,4 Square Units.

    • @PreMath
      @PreMath  День назад +1

      Excellent!
      Thanks for sharing ❤️🙏