Can you solve for X and Y? | (Rectangle) |

Поделиться
HTML-код
  • Опубликовано: 31 янв 2025

Комментарии • 37

  • @vandine47
    @vandine47 2 дня назад +1

    Beautiful

  • @AzouzNacir
    @AzouzNacir 2 дня назад +4

    Let H be the projection of point E on CD. We put BC=a and HC=b, and from this a*b=60 and a*(21-b)=192. Solving these two equations, we get a=12 and b=5, and from this x=√(12²+16²)=20 and y=√(12²+5²)=13.

  • @marioalb9726
    @marioalb9726 2 дня назад +1

    A₁=½b₁h= 96cm² ; A₂=½b₂.h=30cm²
    A₁+A₂= ½h(b₁+b₂)= 96+30= 126 cm²
    h= 2(A₁+A₂)/(b₁+b₂)= 2*126/21= 12cm
    b₁=2A₁/h= 16cm ; b₂= 21-b₁= 5cm
    x²= b₁²+h² --> x = 20 cm
    y²= b₂²+h² --> y = 13 cm

  • @marioalb9726
    @marioalb9726 2 дня назад +2

    Triangle CDE:
    A = ½b.h = (96+30)= 126cm²
    h = 2A/b= 2*126/21= 12cm
    b₁=b(A₁/A)=16cm ; b₂=b(A₂/A)=5cm
    Pytagorean theorem:
    x²= b₁²+h² --> x = 20 cm
    y²= b₂²+h² --> y = 13 cm

  • @mohammedkhettab9965
    @mohammedkhettab9965 2 дня назад +1

    ❤❤❤❤❤

  • @MrPaulc222
    @MrPaulc222 2 дня назад +1

    That triangle configuration means that the white triangle occupies half the rectangle.
    Rectangle area = 252 cm^2.
    Therefore, h = 252/21 = 12.
    192/12 = 16 and 60/12 = 5.
    16^2 + 12^2 = 256 + 144 = 400 = x^2
    Therefore, x = 20.
    5^2 + 12^2 = 25 + 144 = 169 = y^2
    Therefore, y = 13.
    On reflection, 12, 16, 20 and 5, 12, 13 are both Pythagorean triples or multiples thereof.

  • @alexniklas8777
    @alexniklas8777 2 дня назад

    AE/BE= 96/30= 16/5;
    AE= 16, BE= 5,
    AD= BC= 2×30(96)/5(16)= 12.
    DE= √(16^2+12^2)= √400= 20;
    CE= √(5^2+12^2)= 13.

  • @jamestalbott4499
    @jamestalbott4499 2 дня назад

    Thank you!

  • @鈞齊
    @鈞齊 5 часов назад

    Notice that ABCD is rectangle, so ∆AED and ∆BEC have the same height(AD=BC)
    That means the following formula holds
    Area(∆AED):Area(∆BEC)=AE:BE
    => AE:BE=96:30
    => AE:BE=16:5
    and we have AE+BE=AB=CD=21
    => AE=16, BE=5
    5×BC=2×30 => BC=12=AD
    x=√(16²+12²)=20, y=√(5²+12²)=13

  • @himo3485
    @himo3485 2 дня назад +1

    (96+30)*2=252 252/21=12
    12*AE/2=96 AE=16
    12*EB/2=30 EB=5
    x=√[12^2+16^2]=20 y=√[5^2+12^2]=13

    • @SkinnerRobot
      @SkinnerRobot 2 дня назад

      Beautifully concise writeup of the solution. Thanks.

  • @alster724
    @alster724 2 дня назад

    Pretty straightforward

  • @santiagoarosam430
    @santiagoarosam430 2 дня назад

    AD=(96+30)*2/21=12---> EB=2*30/12=5---> EA=21-5=16 ---> EC=√(5²+12²)=13=y ; ED=4*5=20=x.
    Gracias y un saludo cordial

  • @AmirgabYT2185
    @AmirgabYT2185 2 дня назад +1

    (20; 13)

  • @AsifAbdullah-jo1eb
    @AsifAbdullah-jo1eb 2 дня назад

    Since two shaded triangles have same height, then
    a/(21-a)=96/30=16/5
    Comparing both sides of equation,
    a=16
    21-a=5
    Heiight = 12cm
    By Pythagorean theorem
    x=20cm
    y=13cm

  • @cyruschang1904
    @cyruschang1904 2 дня назад

    Rectangle area = 2(96 + 30) cm^2 = 252 cm^2 = (21 cm)(width)
    width = (252/21) cm = 12 cm
    x^2 = (12 cm)^2 + [(21 cm)(96)/(96 + 30)]^2
    x = √(12^2 + 16^2) cm = 20 cm
    y^2 = (12 cm)^2 + [(21 cm)(30)/(96 + 30)]^2
    y = √(12^2 + 5^2) cm = 13 cm

  • @Waldlaeufer70
    @Waldlaeufer70 2 дня назад

    BE = 21 / 126 * 30 = 5
    AE = 21 - 5 = 16
    AD = BC = 2 * 30 / 5 = 12
    x² = 16² + 12² = 400
    x = 20
    y² = 5² + 12² ? 25 + 144 = 169
    y = 13

  • @marcgriselhubert3915
    @marcgriselhubert3915 2 дня назад

    Be h = AD = BC; a = AE and b = EB. The area of the green triangle is (1/2).a.h = 96, so a.h = 198. The area of the yellow triangle is (1/2).b.h = 30, so b.h = 60
    We then have a/b = 198/60 = 16/5. There is a real k as a = 16.k and b = 5.k. Now knowing hat a + b = DC = 21, we have 16.k + 5.k = 21 and so k = 1
    We then have a = 16 and b = 5. We now calculate h: b.h = 60, so h = 60/b = 60/5 = 12.
    In the green triangle x^2 = a^2 + h^2 = 16^2 + 12^2 = 400, so x = 20. In the yellow triangle y^2 = b^2 + h^2 = 5^2 + 12^2 = 169, so y = 13.

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 дня назад

    20,13

  • @Christopher-e7o
    @Christopher-e7o 20 часов назад

    X,2x+5=8

  • @michaelstahl1515
    @michaelstahl1515 День назад +1

    Great video again . Thanks . I choosed another solution and AD = a , AB = b . Than EB = 21 - b and so on . I got without the white triangle x = 20 LE and y = 13 LE.

    • @PreMath
      @PreMath  День назад

      Nice work!
      Thanks for the feedback ❤️🙏

  • @pas6295
    @pas6295 2 дня назад

    Not D but E

  • @DB-lg5sq
    @DB-lg5sq Час назад

    شكرا لكم على المجهودات
    يمكن استعمال
    BC=t
    EB=60/t
    AE=192/t
    60/t + 192/t =21
    t = 12
    x=20
    y=13

  • @pas6295
    @pas6295 2 дня назад

    First we name the rectangle as ABCD. , Let AD meet BC at D. We r given AD ss 21 cms. And so also BC as 21 cms. D is the point where the line AE meets BC. From the triangles ABE and ECD we r given the areas as 96 sq Cms and 30 Sq Cms. Let us assume the distance BE as Z Cms. Then EC is 21-Z Cms. With the help of the areas of two triangles we by Applying Pythagoras therem as Angle at B and at C. We cansolve for Z as two triangles give u two equations involvinv Z. Similarly AB and CD we can get once we know the Z. Total Area of Rectangle is sum of 96+30+the Area of AED. AE is X and ED as Y Cms.Area of AED can be calculatdd invollvinv Heron theorem But u have Xand Y as two unknowns. Fro. The area of 96 and 30 sq. Cms having got Z we can get the bredth SB and CD. So Area of Rectangle is 21×Bredth AB. From the rectangle Area -(96+30) give u the area of AED. Once u get Area of AED. Where u have the two u knowns and each X and Y. We can solve for Xand Y. Hence the answer

  • @phungpham1725
    @phungpham1725 2 дня назад

    1/ h= 12
    2/ 1/2 . h.DF= 96-> DF= 16-> DE= x= 20 ( 3-4-5 triples)
    3/ FC= 5-> sq y= sq5 + sq12= 25+144=169
    -> y= 13
    😅😅😅

  • @unknownidentity2846
    @unknownidentity2846 2 дня назад +1

    Let's find x and y:
    .
    ..
    ...
    ....
    .....
    From the given diagram we can conclude:
    A(ADE) + A(BCE) = (1/2)*AE*h(AE) + (1/2)*BE*h(BE) = (1/2)*AE*AD + (1/2)*BE*AD = (1/2)*(AE + BE)*AD = (1/2)*AB*AD = (1/2)*CD*AD
    96cm² + 30cm² = (1/2)*(21cm)*AD
    126cm² = (1/2)*(21cm)*AD
    ⇒ BC = AD = 2*126cm²/(21cm) = 12cm
    A(ADE) = (1/2)*AE*AD ⇒ AE = 2*A(ADE)/AD = 2*96cm²/12cm = 16cm ⇒ BE = AB − AE = 21cm − 16cm = 5cm
    Now we can apply the Pythagorean theorem to the right triangles ADE and BCE:
    x² = DE² = AD² + AE² = (12cm)² + (16cm)² = 144cm² + 256cm² = 400cm² ⇒ x = √(400cm²) = 20cm
    y² = CE² = BC² + BE² = (12cm)² + (5cm)² = 144cm² + 25cm² = 169cm² ⇒ y = √(169cm²) = 13cm
    Best regards from Germany

    • @SkinnerRobot
      @SkinnerRobot 2 дня назад

      Very nice and thorough writeup.

  • @ManojkantSamal
    @ManojkantSamal 2 дня назад

    X=20, y=13......May be
    Explain later

  • @fhffhff
    @fhffhff 2 дня назад

    ((x-1)/y')'*y'²+5(x/y)'*y²=cosx ((x-1)/y')'(y'/y)²+5(x/y)'=0 x/y=z y=x/z z(x²-x)z''+(-2x²+2x)z'²+(5x²+x-2)zz'+z²=0

  • @sergioaiex3966
    @sergioaiex3966 2 дня назад

    Solution:
    Green Area = ½ b h
    96 = ½ a h
    ah = 192 ... ¹
    Yellow Area = ½ b h
    30 = ½ (21 - a) h
    60 = 21h - ah ... ²
    Replacing Equation ¹ in Equation ², we will get:
    60 = 21h - 192
    21h = 252
    h = 252/21
    h = 12
    Substituting h in Equation ¹
    a (12) = 192
    a = 16
    Applying Pythagorean Theorem to calculate "x":
    (16)² + (12)² = x²
    x² = 256 + 144
    x² = 400
    x = 20 cm ✅
    Applying Pythagorean Theorem, once again, now to calculate "y":
    (21 - 16)² + (12)² = y²
    25 + 144 = y²
    y² = 169
    y = 13 cm ✅
    Thus,
    x = 20 cm ✅
    y = 13 cm ✅

  • @texitaliano64
    @texitaliano64 9 часов назад

    Numero i vertici del rettangolo in senso antiorario partendo dal vertice in basso a sinistra ABCD assegno E al vertice del triangolo sul lato CD, chiamo x il lato AE e y il lato BE del triangolo, chiamo a il lato DE e b il lato EC, l'altezza del rettangolo la chiamo h.
    area triangolo EDA
    S1=a*h/2=96
    area triangolo BCE
    S2=b*h/2=30
    b=21-a
    S2=(21-a)*h/2=30
    area rettangolo ABCD
    S=21*h
    area triangolo ABE
    S3=21*h/2
    S=S3+S1+S2
    sostituendo abbiamo che
    21*h=21*h/2+96+30
    42*h=21*h+126*2
    42*h-21*h-252=0
    21*h-252=0
    h=252/21=12
    h=12
    a*h/2=96
    a*12/2=96
    a=96/6=16
    a=16
    b=21-16=5
    b=5
    con pitagora ricavo x
    x=sqrt(a^2+h^2)
    x=sqrt(16^2+12^2)
    x=sqrt(400)=20
    x=20
    con pitagora ricavo y
    y=sqrt(b^2+h^2)
    y=sqrt(5^2+12^2)
    y=sqrt(169)=13
    y=13

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho День назад

    This Problem was quite easy.
    Area of Triangle [ABCD] = (2 * 96) + (2 * 30) = 192 + 60 = 252
    AD = BC = 252 / 21 ; AD = BC = 12
    AE = X
    BE = Y
    X * 12 = 192 ; X = 16
    Y * 12 = 60 ; Y = 5
    Using PT we get :
    Triangle [AED] = (12 ; 16 ; 20) = ((4 * 3) ; (4 * 4) ; (4 * 5))
    Triangle [BCE] = (5 ; 12 ; 13)
    Answer x = 20 and y = 13