Lune of Hippocrates | Can you find area of the Purple shaded region? |

Поделиться
HTML-код
  • Опубликовано: 31 янв 2025

Комментарии • 31

  • @AzouzNacir
    @AzouzNacir 11 часов назад +2

    A=(π*(4*√2)²/2)-((π*8²)/4-(8*8/2))
    A=32

  • @marioalb9726
    @marioalb9726 11 часов назад +1

    R=r√2 --> R²= 2r² , Then :
    Semicircle area = Quarter circle area
    Then :
    Shaded area = Isosceles right triangle area
    A = ½bh = ½R² = ½8² = 32cm²

  • @marioalb9726
    @marioalb9726 11 часов назад +1

    Semicircle:
    A₁= ½π(R/√2)² = ½πR²/2= ¼πR²
    Circular Segment :
    A₂= ½R²(α-sinα)= ½R²(π/2-1)= ¼πR²-½R²
    Shaded area:
    A= A₁-A₂= ½R²= ½8²= 32 cm² (Solved √)

  • @EPaozi
    @EPaozi 11 часов назад +1

    Surprenant et amusant. Bonne journée

  • @marioalb9726
    @marioalb9726 11 часов назад +2

    A₁ = ¼πR²
    A₂ = ½π(R/√2)² = ½πR²/2= ¼πR²
    A₁=A₂ ; A = A₁-A₂+A₃
    A=A₃= ½bh = ½8² = 32 cm² ( Solved √)

  • @jamestalbott4499
    @jamestalbott4499 7 часов назад

    Thank you!

  • @zawatsky
    @zawatsky 11 часов назад +1

    АС=8√2, это диаметр полукруга. Он же - основание ▲АВС. Сперва ищем площадь жёлтого сегмента, она получается вычитанием треугольника из четверти круга. Площадь четверти круга S₁=π8²/4=8π*2=16π. Площадь равностороннего прямоугольного ▲АВС S(ABC)=8²/2=8*4=32. S₂=16π-32. Радиус полукруга r=8√2/2=4√2. Его площадь S₂=(4√2)²π/2=16*2π/2=16π. Таким образом искомая площадь серпа S=16π-(16π-32)=16π-16π+32=32, т. е. точно равна площади треугольника.

  • @MrPaulc222
    @MrPaulc222 23 минуты назад

    Although not mentioned, I'm assuming the wider arc between A and C is a semicircle - it looks that way visually.
    The straight line AC is 8*sqrt(2).
    r (OC or OB) = 4*sqrt(2). Area of semicircle is 16pi un^2.
    Calculate inner arc of AC and subtract it from 16pi.
    Quadrant ABC area = 16pi.
    Inner arc AC = 16pi - 32
    Sln: 16pi - (16pi - 32)
    Purple area = 32 un^2.

  • @unknownidentity2846
    @unknownidentity2846 11 часов назад +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let R be the radius of the quarter circle and let r be the radius of the semicircle. Since ABC is a right triangle, we can apply the Pythagorean theorem:
    AC² = AB² + BC²
    (2r)² = R² + R²
    4r² = 2R²
    ⇒ r²/2 = R²/4
    Now we are able to calculate the area of the purple region:
    A(purple)
    = A(semicircle) − A(yellow circle segment)
    = A(semicircle) − [A(yellow quarter circle) − A(triangle ABC)]
    = A(semicircle) − A(yellow quarter circle) + A(triangle ABC)
    = πr²/2 − πR²/4 + A(triangle ABC)
    = πR²/4 − πR²/4 + A(triangle ABC)
    = A(triangle ABC)
    = (1/2)*AB*BC
    = R²/2
    = 8²/2
    = 32
    Best regards from Germany

  • @Marcus-y1m
    @Marcus-y1m 3 часа назад

    It was easy peasy

  • @AmirgabYT2185
    @AmirgabYT2185 11 часов назад +1

    S=32 square units

  • @alexundre8745
    @alexundre8745 11 часов назад

    Bom dia Mestre
    Desejo-lhe um mês abençoado q se inicia
    Grato pela aula

  • @santiagoarosam430
    @santiagoarosam430 10 часов назад

    Radio púrpura =r=CO=8√2/2=4√2 ---> Área sombreada púrpura =(πr²/2)-(π8²/4)+(8²/2) =16π-16π+64/2=32 u².
    Gracias y un saludo cordial.

  • @CharlesB147
    @CharlesB147 5 часов назад

    It's the Lune of Hippocrates! Awesome problem!

  • @DavidLovelady
    @DavidLovelady 3 часа назад

    I’m not a math wizard by any means but last I checked acres is a measurement of area
    That is what the problem is
    To find the area
    The measurements given are linear

  • @pas6295
    @pas6295 10 часов назад

    We have the triangle with sides 8 units and a rt. Angled one so the Hypotenuse is 8^2+8^2.√ of that. @ √128. This is the diameter. Hence its radius is √128/2. =8/√2.contd after seeing the figure.

  • @MdShahriarHossain-l1n
    @MdShahriarHossain-l1n 6 часов назад

    Too easy to solve

  • @pas6295
    @pas6295 10 часов назад

    Areas ( Sum of both purpol and Yellow is πr^2./2.So it is Half

  • @JSSTyger
    @JSSTyger 8 часов назад

    32 sir

  • @nenetstree914
    @nenetstree914 12 часов назад

    32

  • @christopherellis2663
    @christopherellis2663 9 часов назад

    The Area of the Lune 🌙 is the same as the Area of the Triangle 🔺️

  • @marcgriselhubert3915
    @marcgriselhubert3915 11 часов назад

    Easy. The radius of the big circle is R = OA = OC = (8.sqrt(2))/2 = 4.sqrt(2). The area of the big semi circle is (Pi.(R^2))/2 = (Pi.32)/2 = 16.Pi
    The area of the triangle ABC 1s (1/2).8.8 = 32. The area of the small quater circle is (Pi.(r^2))/4 with r = 8, so it is (Pi.64)/4 = 16.Pi
    Finally the purple area is 16.Pi + 32 - 16.Pi = 32.

  • @NYlivinginTN
    @NYlivinginTN 10 часов назад

    ruclips.net/video/NGsuCPFjStI/видео.htmlsi=n3If6L01GPvrGK2y

  • @pas6295
    @pas6295 10 часов назад

    It if Half πr^2.. But r is 8/√2. U have π×(8/√2) ^2. So it 64/4. Which is 16. Sq units

  • @phungpham1725
    @phungpham1725 4 часа назад

    1/ Label BC=AB = a --> OA=OC=a sqrt2/2
    2/ Let A be the area of the isosceles triangle ABC
    We have: Area of the yellow segment = area of the 1/4 yellow circle- A
    = pix sqa/4 - A (1)
    And Area of the purple region = 1/2 Area purple circle - Area of the yelow segment
    = 1/2 xpi x sq (asqrt2/2)-
    ( pixsqa/4-A)
    = pix sqa/4 -pixsqa/4+ A
    --> Area of the purple region = A=32 sq units😅😅😅

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 10 часов назад

    MY RESOLUTION PROPOSAL :
    01) OC = OA = R lin un
    02) Semicircle Radius (R) = (4 * sqrt(2)) lin un
    03) Semicircle Area (SA) = (R^2 * Pi) / 2 ; SA = 32Pi sq un ; SA ~ 100,53 sq un
    04) AB = BC = 8 lin un
    05) Circular Segment Area (CSA) = [(8^2/2) * (Pi/2 - sin(Pi/2)] ; CSA = 32 * (Pi - 1) ; CSA = (32Pi - 32) sq un ; CSA ~ 68,53 sq un
    06) Purple Shaded Area (PSA) = [32Pi - (32Pi - 32)] sq un ; PSA = 32Pi - 32Pi + 32 ; PSA = 32 sq un
    Therefore,
    MY ANSWER IS:
    Beyond any reasonable doubt the Purple Shaded Area is equal to 32 Square Units.

  • @wackojacko3962
    @wackojacko3962 8 часов назад

    Let's say I have a plot of land all fenced off similarly to this problem. (IN ACRES!) 🤔 ... Then do the math. Is there such a thing as a Square Acre? I think not. A Square Acre makes no sense at all! ... just sayin because a 1 acre is a real unit already equal to 4,480 square yards. I'd love to sell this plot of land to you because each proposed square acre would be squared! That's what I call added value. 😊

  • @mohanramachandran4550
    @mohanramachandran4550 12 часов назад

    (22÷(7*2)×(4√(2)×4√(2))) -
    ((22÷(4*7)×(8×8)-(8×4))=
    31.99999999999998
    =32