Part of what they are not showing here is that at the coupling between each gas turbine engine and the drivetrain is a device referred to as a 1-way bearing. It looks like a slightly modified roller bearing. When rotational force is applied in one direction the rollers grab and rotate the drive train. When that rotational force is removed, the drive train continues to function. This is what give a turbine helicopter the ability to autorotate in the event of an engine loss. This is also how a multi-engine helicopter of the design shown can start each engine independently and not destroy the other engine or the drivetrain in the process. The 1-way bearing is at least how Airbus/Aerospatiale solves the problem. I'm pretty sure this is what Bell, Sikorsky and others do as well. On multi-engine Airbus helicopters, there is a control on the dash that once both engines are up and running, the pilot turns a knob and balances the N1 and N2 outputs (Engine 1 and Engine 2) which helps synchronize everything to the R1 speed (rotor). For those who don't know, most helicopters have a gauge on the dash with needles labeled N and R. N indicates engine speed, R indicated rotor speed. On a single engine helo, turbine or reciprocating (in the case of a Bell 47 or an R22/R44) when the 2 needles line up, then the engine and rotore speeds are synchronized and the aircraft is ready for takeoff.
Thanks for the comment. I did include the sprag clutch, but it's definitely not that apparent from the video. I have a 56 tooth gear off of the high speed Np shaft... If you look closely, you may be able to see the split ring, on the 56 tooth, with the sprags inside. Good comment... It was a nice description of what the clutch does and why it's important.
@@bzig4929 I spent 2 years on overnight security at the Airbus facility in Grand Prairie, Tx. Most of that time was as a supervisor. But I have paid attention to aviation for several decades. You can’t walk around a helicopter training and maintenance facility nightly and not pick up on some of the mechanics of how they work.
مرحبا .كيف تنقلب الطائرة الى اليمين واليسار وكذلك الخلف والامام.اسأل عن الانقلاب وليس الاستدارة.اما بالنسبة للاستدارة او الدوران .فكيف يكون . والشكر لك
@@u1zha The sun/planet gear is for speed reduction. It is being driven by the output of the combining unit. Google sun/planet gear and you will find an explanation how these things work.
The planetary is for gear reduction. It could be done other ways. I don't think there's anything magic about planetaries but most helicopters seem to use them. In this model, the gear reduction is accurate... I went from 18,000 RPM at the gas generator turbine to 275 at the rotor... Which is pretty typical of most helicopters.
@@bzig4929 OK, I had to squint to see the sun gear in there. I machine gears and completely missed seeing how the sun gear is not attached to the top part of the shaft. I looked more closely and see that they are actually two separate shafts, which makes much more sense. Again, very well done!
Very high speed from the turbine engines, and the reduction gearbox. Then has to turn lower rpms for the main, and tail rotor. The speed, and or rpms of the main rotor of most larger helicopters, is normally about 325, 400!! The tail rotor rpms are higher!
Just look at all those single point failure opportunities. Been flying fixed for 38 years, but I will not get in any kind of traditional rotory wing. However, I’d consider a Jetson One if it has a BRS.
Thanks for the comment! I think it's cool how helicopter gearboxes can combine the various gear reductions to go from a very fast rotating engine to a very slow rotating rotor. Here, I modeled realistic rotational speeds for the components. In this animation, the high speed input from the engine is turning at 12,800 RPM, the free wheeling unit turns at 6400 RPM, the bevel pinion at 3200 RPM, the bevel gear (and also the sun for the planetary) turns at 1280 RPM; finally, the main rotor is turning at 256 RPM.
I understand all its systems but one thing I don't understand is that its wings are what they are but how they are neutralized while the engine is running and often we see that the wings are standing still. but engine starts
The power turbine is not mechanically connected to the gas generator. It is a gas connection to the gas generator and a mechanical connection to the rotor system. So, if the helicopter is equipped with a rotor brake, the brake can hold the rotor and power turbine stationary while the engines are operating. This is a common practice for high wind starts. This starts the rotors with faster acceleration and minimizes the chance that a gust will cause low-rpm blades to exceed a flapping limit.
Some helicopters have rotor brakes used to stop the rotors after engine shutdown. The rotor brake can also be used during engine start. The pilot applies the brake and then starts the engines. The rotors stay stationary until the brake is released.
@pintchigawza6496 I'm very new and still learning, but the rotor brake can be used because of how the turbine engine's power band works I believe. If we were comparing it to a turbocharger in a car, the car only receives compressed air and gains a decent amount of power because of the explosion, but the turbo still has to spool up. In a turbine engine, since the entire engine is based off of air temperatures judging the air's flow speed (combined with compression) we can see that the engine may not likely "spool up" to a maximum output of power, which would mean it exponentially increases (maybe, if that's correct). There is an ideal idle RPM speed as well, and the gear box in the rear takes the insanely high rpm speed of the turbines and steps them down because of ratio and also the weight of the rotor blades. So, in otherwords I believe they don't actually need a clutch. (There is also a system that allows for the rotor to still spin in the event of an engine failure)
@samspade8612 There are no such named control inputs. In fact, the pilot in a hover is making multiple control inputs in all three axes at a rate that would probably surprise you! That being said, it's certainly a great video. It's too bad we had no such animations when I was learning how to fly them!
Great animation but ought not the tail rotor be on the other side to counteract that particular main rotor direction? This design would be more suspectable to LTE.
I loosely based this on the black hawk and the S92 that have their tail rotors on the right side. Another sikorsky product, the ch53, uses a left mounted tail rotor. You're probably correct about LTE . I suppose an advantage of right side tail rotors is more ground clearance due to the 20 degree cant.
I like the comment. I think all of us trust our lives to complex technology every day. Sometimes it's disconcerting to see the machinery behind the curtains.
Yeah, It looks a little oversized... I took measurements from photos and known length things like the dimensions in flight manuals, but I agree. I could have done the sizing better. To be fair though... Heavies do have big gearboxes.
Correct. But there are two modes of pitch change. Collective… the blades all stay at the same pitch angle. Or cyclic pitch change where the blades change blade angle once per revolution.
Это называется синусоидальным вращением. То есть винт вращается, но лопасти изменяют угол атаки именно в том месте где это необходимо. И уходя с того места угол атаки снова меняется обратно. Грубо говоря, если пилот решит после взлёта полететь вперёд, он отклоняет ручку управления от себя для того, чтобы вектор тяги винта был не вертикальный, а наискось. В передней части диска винта угол атаки лопастей понижается, а в задней части увеличивается. Лопасть проходя передний сектор уменьшает угол атаки, а в заднем увеличивает. И винт даёт неравномерную тягу - в передней части меньше тяги, а в задней больше и таким образом вертолёт наклоняется и летит вперёд. Ну и соответственно, управление во все остальные стороны: торможение и полёт назад хвостом вперёд, крен вправо или влево происходит аналогично - угол атаки больше с противоположной стороны выбранному направлению. А также можно лететь вперёд и вбок. Это самое простое обьяснение. Хотя, почему я сказал грубо говоря, потому что эксперты и лётчики заявляют что есть так называемая гироскопическая прецессия, которую лично я для себя так и не смог толком понять. Но в общем, из-за неё лопасть с одной стороны увеличивает угол атаки гораздо раньше на 45 градусов по сектору. То есть для того чтобы двигаться вперёд лопасть увеличивает угол атаки не в заднем секторе, а даже в левом боковом секторе. Вот такая теория.
@@АндрейПросто-т5х Это очень хорошо когда находишь ответ на мучающий любопытный разум вопрос. Не важно, пригодится это или нет. А я помню лет 25 назад когда ещё не было интернета мне пришлось штудировать библиотеки. Потому что у меня тогда ещё 15 подростка остался в теме принципа работы техники только один интересующий меня вопрос, на который никто не мог дать ответ из взрослых, что ещё больше заставило меня с остервенением искать ответа на этот вопрос: как летает вертолёт, а именно как он летит вперёд. Соответственно литературу я таки нашёл и оказалось всё просто - автомат перекоса. Гениальное и сложное изобретение авиатора Юрьева Бориса Николаевича.
Is it possible to calculate HOW MUCH power is lost through all that gears? Say a _direct drive_ is 100% power (shaft straight to blade) but reduced everytime when paired with a gear. Anyone?
Here's how we do it for helicopter performance charts... Measure torque at the high speed engine output, multiply by rotor rpm, then flight test to generate weight, altitude and temperature curves for how much the aircraft can lift. Final step... Multiply by "k" which is a constant that accounts for drive system loses. So, we don't really care what those specific losses are because it's all experimental data. There prob is a way to calculate this, but this info isn't used for creating performance data and charts.
@@bzig4929 Sounds like the question "calculate HOW MUCH power is lost through all that gears" was synonymous to "calculate what is k"... And you answered everything but the question :)
k is determined through experiment. This is similar to spring constants; you apply a load and measure the displacement and then you know the spring constant.
Маленькая неточность. Автомат перекоса не наклоняется туда-сюда вместе в вращением винта. Автомат перекоса наклонили и ура. ))) А лопасти уже туда сюда наклоняются.
ماشاء الله تبارك الله الملك الحور أرحمن أرحيم الله الملك الحق المبين الملك الخالق لي كول الخلق والمخلوقة وكول شيئ جل جلاله أسلطان وله الأسماء الحوسناء والحمد الله الملك الواحد وهو رب العالمين ومالكوناء وهو رب العرش العظيم الكريم وهو مالكه سبحانه وتعالى علوه الأكبر ☝️✍️🙌😄😍😗😙😘☝️✍️🙌💖💖💖💖♥️💖 والحمد الله على خيره كوله والحمد الله على خير خلقه كولهيم وأسلام الله عليكم وعليئ دأيمن وأبداء ورحمة الله وبركاته 😉😄😊😊♥️💖♥️💖💖💖💖💖💖💖
@@u1zha you talk only about maths ratio, i mean the bevel gear usually more weak than cylinder gear, if make the power 2 in 1,better use 2 way of bevel gears. you have ratio, but not always have those ratio of real max torque. such like the hour needle on clock, it slowly,but not have torque
Part of what they are not showing here is that at the coupling between each gas turbine engine and the drivetrain is a device referred to as a 1-way bearing. It looks like a slightly modified roller bearing. When rotational force is applied in one direction the rollers grab and rotate the drive train. When that rotational force is removed, the drive train continues to function. This is what give a turbine helicopter the ability to autorotate in the event of an engine loss. This is also how a multi-engine helicopter of the design shown can start each engine independently and not destroy the other engine or the drivetrain in the process. The 1-way bearing is at least how Airbus/Aerospatiale solves the problem. I'm pretty sure this is what Bell, Sikorsky and others do as well. On multi-engine Airbus helicopters, there is a control on the dash that once both engines are up and running, the pilot turns a knob and balances the N1 and N2 outputs (Engine 1 and Engine 2) which helps synchronize everything to the R1 speed (rotor). For those who don't know, most helicopters have a gauge on the dash with needles labeled N and R. N indicates engine speed, R indicated rotor speed. On a single engine helo, turbine or reciprocating (in the case of a Bell 47 or an R22/R44) when the 2 needles line up, then the engine and rotore speeds are synchronized and the aircraft is ready for takeoff.
Thanks for the comment. I did include the sprag clutch, but it's definitely not that apparent from the video. I have a 56 tooth gear off of the high speed Np shaft... If you look closely, you may be able to see the split ring, on the 56 tooth, with the sprags inside. Good comment... It was a nice description of what the clutch does and why it's important.
@@bzig4929 I spent 2 years on overnight security at the Airbus facility in Grand Prairie, Tx. Most of that time was as a supervisor. But I have paid attention to aviation for several decades. You can’t walk around a helicopter training and maintenance facility nightly and not pick up on some of the mechanics of how they work.
مرحبا .كيف تنقلب الطائرة الى اليمين واليسار وكذلك الخلف والامام.اسأل عن الانقلاب وليس الاستدارة.اما بالنسبة للاستدارة او الدوران .فكيف يكون .
والشكر لك
@@VabBaseo-vy8kjvariable sweep on the rotors
Absolutely beautiful animation; thank you for sharing it.
Thanks!
finally a very good illustration
i searched those topic in my childhood, but it found today...thankyou mr.bzig❤
Thanks for your comment!
Awesome animation!
absolutely fantastic
Unbelievable how clearly is explained ❤❤❤❤❤
Thanks!
The sun/planet gear mechanism in the main gear box (as shown in this video animation) is very cleaver engineering.
Yes it is, and genius engineering 👏
What's the point of it? The animation doesn't show anything else attached to it. Is it just acting as a big bearing?
@@u1zha The sun/planet gear is for speed reduction. It is being driven by the output of the combining unit. Google sun/planet gear and you will find an explanation how these things work.
I'm curious of why there is a planetary gear box. Maybe for main shaft stability? I don't see any other purpose. Great animation. Thanks for sharing.
The planetary is for gear reduction. It could be done other ways. I don't think there's anything magic about planetaries but most helicopters seem to use them. In this model, the gear reduction is accurate... I went from 18,000 RPM at the gas generator turbine to 275 at the rotor... Which is pretty typical of most helicopters.
@@bzig4929 OK, I had to squint to see the sun gear in there. I machine gears and completely missed seeing how the sun gear is not attached to the top part of the shaft. I looked more closely and see that they are actually two separate shafts, which makes much more sense. Again, very well done!
Very high speed from the turbine engines, and the reduction gearbox. Then has to turn lower rpms for the main, and tail rotor. The speed, and or rpms of the main rotor of most larger helicopters, is normally about 325, 400!! The tail rotor rpms are higher!
@@ronaldgreen5292 indeed.
@@bzig4929Op0pp
Obrigado pelo vídeo! Deu pra entender bem como funciona o movimento das asas rotativas e do rotor de calda!
Such a good channel
Just look at all those single point failure opportunities.
Been flying fixed for 38 years, but I will not get in any kind of traditional rotory wing.
However, I’d consider a Jetson One if it has a BRS.
_Thanks!_
_Very interesting and informative!_ 🇷🇺
Muy bueno. No entiendo como puede soportar tanta velocidad tantos engranajes.
Thanks for the comment! I think it's cool how helicopter gearboxes can combine the various gear reductions to go from a very fast rotating engine to a very slow rotating rotor. Here, I modeled realistic rotational speeds for the components. In this animation, the high speed input from the engine is turning at 12,800 RPM, the free wheeling unit turns at 6400 RPM, the bevel pinion at 3200 RPM, the bevel gear (and also the sun for the planetary) turns at 1280 RPM; finally, the main rotor is turning at 256 RPM.
I understand all its systems but one thing I don't understand is that its wings are what they are but how they are neutralized while the engine is running and often we see that the wings are standing still. but engine starts
The power turbine is not mechanically connected to the gas generator. It is a gas connection to the gas generator and a mechanical connection to the rotor system.
So, if the helicopter is equipped with a rotor brake, the brake can hold the rotor and power turbine stationary while the engines are operating. This is a common practice for high wind starts. This starts the rotors with faster acceleration and minimizes the chance that a gust will cause low-rpm blades to exceed a flapping limit.
What i dont understand is I hear the engine starts but rotor doesn't rotate only after a while. How that can be possible?
Some helicopters have rotor brakes used to stop the rotors after engine shutdown. The rotor brake can also be used during engine start. The pilot applies the brake and then starts the engines. The rotors stay stationary until the brake is released.
@@bzig4929 thanks, then engine and motor have some type of clutch? If they have direct shaft that can't be happens
@pintchigawza6496 I'm very new and still learning, but the rotor brake can be used because of how the turbine engine's power band works I believe. If we were comparing it to a turbocharger in a car, the car only receives compressed air and gains a decent amount of power because of the explosion, but the turbo still has to spool up. In a turbine engine, since the entire engine is based off of air temperatures judging the air's flow speed (combined with compression) we can see that the engine may not likely "spool up" to a maximum output of power, which would mean it exponentially increases (maybe, if that's correct). There is an ideal idle RPM speed as well, and the gear box in the rear takes the insanely high rpm speed of the turbines and steps them down because of ratio and also the weight of the rotor blades. So, in otherwords I believe they don't actually need a clutch. (There is also a system that allows for the rotor to still spin in the event of an engine failure)
And you also want your rotor to spin idly at the right speed before you take off too. I forgot to add that...
@@kuj0176 thanks for ur reply and explaining
Outstanding video! It would be good to highlight the swashplate and name control inputs like FORWARD, HOVER, LEFT, ect. Good job otherwise.
Yes. This video leaves me more confused as to how all that works.
@samspade8612
There are no such named control inputs. In fact, the pilot in a hover is making multiple control inputs in all three axes at a rate that would probably surprise you! That being said, it's certainly a great video. It's too bad we had no such animations when I was learning how to fly them!
Great animation but ought not the tail rotor be on the other side to counteract that particular main rotor direction?
This design would be more suspectable to LTE.
I loosely based this on the black hawk and the S92 that have their tail rotors on the right side. Another sikorsky product, the ch53, uses a left mounted tail rotor. You're probably correct about LTE . I suppose an advantage of right side tail rotors is more ground clearance due to the 20 degree cant.
Engineering is Very beatiful ❤
Это красиво и страшно одновременно.
It's beautiful and scary at the same time
I like the comment. I think all of us trust our lives to complex technology every day. Sometimes it's disconcerting to see the machinery behind the curtains.
@@bzig4929 This huge gearbox...
Yeah, It looks a little oversized... I took measurements from photos and known length things like the dimensions in flight manuals, but I agree. I could have done the sizing better. To be fair though... Heavies do have big gearboxes.
Yea wou nice technisi gearbog whasplate and blades kreatif keren sir!
Здравствуйте! Если я правильно понял при одном обороте винта лопасти меняют угол атаки?
Correct. But there are two modes of pitch change. Collective… the blades all stay at the same pitch angle. Or cyclic pitch change where the blades change blade angle once per revolution.
Это называется синусоидальным вращением. То есть винт вращается, но лопасти изменяют угол атаки именно в том месте где это необходимо. И уходя с того места угол атаки снова меняется обратно.
Грубо говоря, если пилот решит после взлёта полететь вперёд, он отклоняет ручку управления от себя для того, чтобы вектор тяги винта был не вертикальный, а наискось. В передней части диска винта угол атаки лопастей понижается, а в задней части увеличивается. Лопасть проходя передний сектор уменьшает угол атаки, а в заднем увеличивает. И винт даёт неравномерную тягу - в передней части меньше тяги, а в задней больше и таким образом вертолёт наклоняется и летит вперёд.
Ну и соответственно, управление во все остальные стороны: торможение и полёт назад хвостом вперёд, крен вправо или влево происходит аналогично - угол атаки больше с противоположной стороны выбранному направлению. А также можно лететь вперёд и вбок.
Это самое простое обьяснение. Хотя, почему я сказал грубо говоря, потому что эксперты и лётчики заявляют что есть так называемая гироскопическая прецессия, которую лично я для себя так и не смог толком понять. Но в общем, из-за неё лопасть с одной стороны увеличивает угол атаки гораздо раньше на 45 градусов по сектору. То есть для того чтобы двигаться вперёд лопасть увеличивает угол атаки не в заднем секторе, а даже в левом боковом секторе.
Вот такая теория.
@@SkyMaXX5 огромное Вам спасибо, теперь я понимаю!
@@АндрейПросто-т5х Это очень хорошо когда находишь ответ на мучающий любопытный разум вопрос. Не важно, пригодится это или нет.
А я помню лет 25 назад когда ещё не было интернета мне пришлось штудировать библиотеки. Потому что у меня тогда ещё 15 подростка остался в теме принципа работы техники только один интересующий меня вопрос, на который никто не мог дать ответ из взрослых, что ещё больше заставило меня с остервенением искать ответа на этот вопрос: как летает вертолёт, а именно как он летит вперёд.
Соответственно литературу я таки нашёл и оказалось всё просто - автомат перекоса. Гениальное и сложное изобретение авиатора Юрьева Бориса Николаевича.
Is it possible to calculate HOW MUCH power is lost through all that gears? Say a _direct drive_ is 100% power (shaft straight to blade) but reduced everytime when paired with a gear. Anyone?
Here's how we do it for helicopter performance charts... Measure torque at the high speed engine output, multiply by rotor rpm, then flight test to generate weight, altitude and temperature curves for how much the aircraft can lift. Final step... Multiply by "k" which is a constant that accounts for drive system loses. So, we don't really care what those specific losses are because it's all experimental data. There prob is a way to calculate this, but this info isn't used for creating performance data and charts.
@@bzig4929 Thank U.
@@bzig4929 Sounds like the question "calculate HOW MUCH power is lost through all that gears" was synonymous to "calculate what is k"... And you answered everything but the question :)
k is determined through experiment. This is similar to spring constants; you apply a load and measure the displacement and then you know the spring constant.
thnk so much
Loại động cơ này sao không dùng cho siêu xe ???
süper eğitici kim yaptıysa ellerine sağlık
Helicopters are the coolest flying machines ever invented
I know! They are much cooler than airplanes
Маленькая неточность. Автомат перекоса не наклоняется туда-сюда вместе в вращением винта. Автомат перекоса наклонили и ура. ))) А лопасти уже туда сюда наклоняются.
Amazing !!!!
Thanks!!
Вертолёт это очень сложно !! не удивительно что они часто падают !! ))
Вертолетчики- безбашенные люди, раз сознательно летают на такой ненадежной конструкции)
🚁
good one
Nice
We understand everything, yes yes yes . . .
Good, good, good! . . .
Show! Belíssima engenharia aeronáutica.👏👏👏
❤❤❤
น่ารักที่สุด
If you how it works Thats when you know your life is standing on a nidle in the air, any prob you are gone
I have confidence in structures engineering! Thanks for commenting
@@bzig4929 oh yeah me too but one moment U I'll know
Just too many moving parts for my comfort
Красотища!
Thanks!
👍
i like co axial rotor therefore KAMOV all the way
Hay❤
I like Good
ماشاء الله تبارك الله الملك الحور أرحمن أرحيم الله الملك الحق المبين الملك الخالق لي كول الخلق والمخلوقة وكول شيئ جل جلاله أسلطان وله الأسماء الحوسناء والحمد الله الملك الواحد وهو رب العالمين ومالكوناء وهو رب العرش العظيم الكريم وهو مالكه سبحانه وتعالى علوه الأكبر ☝️✍️🙌😄😍😗😙😘☝️✍️🙌💖💖💖💖♥️💖 والحمد الله على خيره كوله والحمد الله على خير خلقه كولهيم وأسلام الله عليكم وعليئ دأيمن وأبداء ورحمة الله وبركاته 😉😄😊😊♥️💖♥️💖💖💖💖💖💖💖
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooooooooooooooooooooooooooooooooo
Akusuka
Glory to 404
p
😂😂😂👍👍👍
this design is stupid,both way into single bevel gear, lost max torque,and lower reliability
Torque just depends on total gear ratio, no? Elaborate
@@u1zha you talk only about maths ratio, i mean the bevel gear usually more weak than cylinder gear, if make the power 2 in 1,better use 2 way of bevel gears. you have ratio, but not always have those ratio of real max torque. such like the hour needle on clock, it slowly,but not have torque
❤❤❤❤❤
Это русская технология, которую дела в Советской Украине.
Yes, Boris Yuryev was one of the early pioneers and many of his inventions are still in use in modern helicopters.