Linear Algebra 9 | Inner Product and Norm

Поделиться
HTML-код
  • Опубликовано: 1 дек 2024

Комментарии • 46

  • @dksmiffs
    @dksmiffs 11 месяцев назад +5

    Excellent pace and clarity for mere mortals like myself. Thank you very much!!

  • @Hold_it
    @Hold_it 2 года назад +8

    A weekend with another video from you, is a good weekend :)

  • @mastershooter64
    @mastershooter64 2 года назад +7

    inner products are the best!

  • @AhmedHussein521
    @AhmedHussein521 Год назад

    Great vid, bouta watch the whole playlist

  • @yogitajindal3149
    @yogitajindal3149 6 месяцев назад

    Very helpful Thank you so much 🙏🏻

  • @MrWater2
    @MrWater2 Год назад +1

    From the definition of norm, can we say that the norm is induced by the inner product?

  • @terriljoelnazareth5495
    @terriljoelnazareth5495 9 месяцев назад

    nice explanation. Thanks

  • @paperstars9078
    @paperstars9078 2 года назад +2

    is there a video that deals with cyclic vector subspaces?

  • @narfwhals7843
    @narfwhals7843 10 месяцев назад

    I am struggling to understand what it actually means to imbue a vector space with an inner product.
    Earlier you define the "canonical unit vectors" as (1,0,0) etc. This is clearly basis dependent so I'm guessing a "canonical" unit vector is a unit vector represented in a canonical basis. And a general unit vector is one with =1.
    This length should be coordinate independent, correct?
    Or is the numerical value always a coordinate value?
    If it is coordinate independent, is then the definition of the inner product equivalent with choosing the unit vectors?
    I ask because I often see the metric used to translate the "length" of a vector between basis, but this always implies a choice of basis to start in which should have the "correct" value.
    This seems arbitrary.
    Is that "choice of correct value" the definition of the inner product? Choosing a family of bases(the canonical ones?) where the metric is the identity?

    • @brightsideofmaths
      @brightsideofmaths  10 месяцев назад +1

      The thing is that R^n comes with a canonical basis even if you don't care about lengths and angles. I can still call these vectors canonical "unit" vectors despite that we don't measure lengths, simply because there is only one 1 involved.

    • @narfwhals7843
      @narfwhals7843 10 месяцев назад

      @@brightsideofmaths I learned a bit more and I think I understand better now. The way we define the inner product defines which vectors get length 1, (which tells us which vectors map to the canonical basis in R^n with the coordinate isomorphosm?). For example on the space of Polynomials the standard way is the integral from 0 to 1 f(x)g(x). That choice defines the unit vectors. We can make a different choice and get different unit vectors.
      All length are then(obviously) relative to the basis which is picked out by the function that defines the length.
      We can then find an orthogonal set of these (Grahm-Schmidt) that spans the space and for this as a basis set the metric tensor is the identity since it just contains the inner products of the basis vectors, which are by definition of orthogonality the Kronecker delta.
      I stumbled pretty hard by just using the monomials as a basis and expecting them to be orthogonal...

    • @brightsideofmaths
      @brightsideofmaths  10 месяцев назад +1

      For me it's helpful not to think in bases and representations. Just take the inner product and the vectors as abstract definitions. I do this approach in the Abstract Linear Algebra Series :) @@narfwhals7843

    • @narfwhals7843
      @narfwhals7843 10 месяцев назад

      @@brightsideofmaths I agree with this approach, which is why I stumbled so hard on this topic. Because any explicit definition of the inner product explicitly picks out a "preferred" kind of basis.
      But the only thing special about them is the unit vectors and at some point we have to plug in numbers to do calculations either way.
      I just originally assumed _which_ numbers we plug in is completely arbitrary, but it depends on the definition of the inner product.

    • @brightsideofmaths
      @brightsideofmaths  10 месяцев назад +1

      The explicit abstract definition of an inner product does not pick any basis.@@narfwhals7843

  • @chiomaudoh3154
    @chiomaudoh3154 Год назад

    Thank you...and one more thing I'm not clear on what r^n Is....
    Is it a Cartesian product with same nos or different nos

  • @ichkaodko7020
    @ichkaodko7020 2 года назад +1

    so there are more norm and inner products other than standarts?

    • @brightsideofmaths
      @brightsideofmaths  2 года назад +1

      Yes, there are a lot :)

    • @ichkaodko7020
      @ichkaodko7020 2 года назад +1

      @@brightsideofmaths thank you for the answer. Damn u mathematics. :-)

  • @Mohamedezzeldin-k8h
    @Mohamedezzeldin-k8h Год назад

    Hi prof, may i have your prefered reference for linear algebra

  • @vistawilliam820
    @vistawilliam820 Месяц назад

    nice video, thanks a lot... and you sound German with your accent😁,,,,

  • @rouzmaryotwori3639
    @rouzmaryotwori3639 Год назад

    Prove that if V is an inner product space and u \in V then ||u|| = sqrt\langleu, u
    angle is a norm on V😢

  • @chiomaudoh3154
    @chiomaudoh3154 Год назад

    What's norm

    • @brightsideofmaths
      @brightsideofmaths  Год назад +1

      A map to measure lengths of vectors :)

    • @chiomaudoh3154
      @chiomaudoh3154 Год назад

      Thank you...and one more thing I'm not clear on what r^n Is....
      Is it a Cartesian product with same nos or different nos

    • @sukhvirsingh3173
      @sukhvirsingh3173 4 месяца назад

      In field​@@brightsideofmaths

  • @whiteshadow5881
    @whiteshadow5881 Год назад

    Cute accent ... "Summawuie" ,

  • @raunakmukherjee8029
    @raunakmukherjee8029 2 года назад

    👍

  • @gavasiarobinssson5108
    @gavasiarobinssson5108 Год назад

    If you have vectors (-1, 0) and (1, 1) the inner product becomes -1