Centrifugal Dust Separator - Dust Collection On A Budget

Поделиться
HTML-код
  • Опубликовано: 28 май 2024
  • Ever seen one of those commercial centrifugal dust collection systems? They use a genius design which incorporates a centrifugal dust separator for dust collection. The only problem is, it's likely out of financial reach for many small shops. What if you could build one yourself? Come along for the journey as we see if it's possible to construct one of these systems for your workshop.
    Want to build your own without all the research and design? Grab the digital 3D prints (STL's) from here. github.com/pilsonguitars/cent...
    Harvey Dust Processor: www.harveywoodworking.com/pro...
    Inspired by Under Dunn's build project. Check out his video here: • I Made a Centrifugal D...
    Parts/Supplies:
    Cartridge Filter = www.amazon.com/dp/B081QV7NX4?...
    Elbows = www.amazon.com/dp/B0BVPS7SF1?...
    5" to 4" Y-Fitting = www.amazon.com/dp/B003NE5A50?...
    Flexible Hose = www.amazon.com/dp/B01M3Y1WTT?...
    6" Clear PVC = www.amazon.com/dp/B09NJLNW58?...
    4" Y-Fitting = www.amazon.com/dp/B005VRJIW8?...
    Hose Clamps = www.amazon.com/dp/B07PDS9HG3?...
    3D Filament = www.amazon.com/dp/B07PGY2JP1?...
    CFM Metrics
    4" (toolside) = 3,780 ft/min.
    5" (post blower) = 3,150 ft/min.
    4" (post Y-fitting, pre-separator) = 3,040 ft/min.
    4" (separator outlet side) = 1,900 ft/min.
    ----
    Hey, this is Tim with Pilson Guitars. We build acoustic guitars and then give them away. We bring you along for the ride as we talk through different building techniques and try to share things we have learned from other skilled builders as we continue to build on our skillset.
    Check out our builds and projects @ pilsonguitars.com
    Check out our store and grab your favorite Pilson Guitars merch @ shop.pilsonguitars.com
  • ХоббиХобби

Комментарии • 502

  • @graemecooper
    @graemecooper 4 месяца назад +10

    "We all become better builders because of the contributions we make to each other." Dude. I'm an instant fan.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +1

      I 100% mean that! I’ve learned so much from other builder’s willingness to share their successes and failures.

  • @WoodcraftBySuman
    @WoodcraftBySuman 4 месяца назад +46

    Insanely good video! To be able to get 94.2% in a DIY setup that has not been optimized through the R&D capacity of Harvey while using a smaller diameter setup is stupid good! Folks will rarely appreciate how much time and effort that went into the making of this video. Really well done!

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +3

      Thank you so much! Really appreciate it!

    • @dieSpinnt
      @dieSpinnt 4 месяца назад

      @@pilsonguitars Well, the goal was to ensure pollution free dust extraction. In fact: YOUR HEALTH!:)
      The industry level 99% vs. your 95% effectivity just means that you have to clean your HEPA filter 3-5 times more often.
      Also $ 500 vs 3500? That is great and who cares, a secondary or tertiary filter (in spare) will mitigate that minor problem/inconvenience from above and doesn't add too much cost. I second that: It works. Really well done!:) Just an additional thought: You are not selling this as a product. That is okay. But you are possibly selling(!) plans for a device that is under patent right by Harvey. You should double check this, or our price calculation from above may become worse. I don't hope so, but a lot worse ... hehe:)
      Edit: Sorry, you are not selling the plan but provide them on . I don't know if this may still be a patent rights infringement. ... ask experts!:)
      More Edit: "Harvey Industries has entered the U.S. market with the Gyro Air Dust Processor. Its patented design aerodynamically splits wood dust ...", 7 Aug 2017 via Woodworking Network.
      From a Discussion forum with "R": "Depends on what the origin of the patent it is. In the US, there is not a personal use exception in patent law. Most other places (like all of Europe) there is. So if you are outside the US, should be OK (because a US patent would not apply to you)", user sebwiers, 8y ago. So greetings from Germany ... and I am good with that:P
      I've looked into other such vacuum cleaner patents and they usually expire after 18-25 years.
      Last words: In part 2 "the community ruins my dust collection" (joking) you mention those pesky guys who suggest a cyclone setup. The US1536592A patent for that has expired at 1942-05-05 ... Just saying, hehe:) (Oh, patented in 1921 by a German in Germany, Hermann Klug(Klug translates to smart, sure ...). I didn't know that).

  • @GoingtoHecq
    @GoingtoHecq 4 месяца назад +5

    I watched this video specifically because you said you were iterating on Under Dunn. I am glad I got to see this impressive work of yours.

  • @user-td4lc9el5o
    @user-td4lc9el5o 4 месяца назад +14

    Beautiful presentation and execution.
    From a 3D printing perspective:
    Vapor bathing the parts will reduce surface friction.
    From a dust collection perspective:
    One major reason for having a 2 stage collection (Vertical or Lateral cyclone) and then pleated air-filter is the protection of the impeller from debris, as such, attaching the blower after the cyclones is an opportunity for improvement. This also allows you to fit the cyclone with the exhaust pointing down into the Wynn style filter.
    A specific improvement: The dust collection chambers should be isolated (all 4) to prevent cycling flow. Part of the efficiency of the cyclone separator is that only acceleration affects the dust particles after the inlet of the next stage. With the dust collection chambers joined, a flow of air will create cycles between the two cyclone ports and allow dust to pass over the port on one side. Furthermore, offsetting the vertical port such that the rotational flow of air can proceed directly down into the dust collection will increase capture of the particles.

  • @ashbeef1987
    @ashbeef1987 4 месяца назад +9

    How do you not even have 1k subs? Your video presents like you have 500k or more. Subscribed. Great content.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Hey, thanks for the kind words of encouragement. Means a lot. I’m just thankful to be able to offer up things I’ve learned and hopefully others find it helpful.

  • @Pillow_Princess
    @Pillow_Princess 4 месяца назад +5

    Was expecting 80k+ subscribers from how good the video was. Well, you got one more now.

  • @gixrman
    @gixrman 4 месяца назад +8

    I did something similar as I 3D printed a cyclone dust separator for my shop vac. One thing I immediately noticed was the static buildup on the plastic parts. This, along with the ridges that are created from 3-D printing, create a significant flow disruption, which doesn’t allow the dust to fall out of suspension in the air. I have used UV liquid resin to fill in/ smooth plastic in the past prints to make it smooth.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Great point! I hadn't considered that effect. Thanks much.

    • @masonlenox6829
      @masonlenox6829 4 месяца назад

      Couldn't you just ground certain parts of it?

    • @haydenc2742
      @haydenc2742 4 месяца назад +1

      You could coat in a self leveling 2 part epoxy, or several coats of polyurethane

    • @haydenc2742
      @haydenc2742 4 месяца назад

      @@masonlenox6829 You want the surface smooth..however the boundary layer even with a slick surface cancels out most of that dust grabbing on the surface

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      I'm thinking about grounding in both sections; the large particle side and the small particle side.@@masonlenox6829

  • @soylentgreen326
    @soylentgreen326 4 месяца назад +15

    Excellent work❤ IMHO try taking off the buckets and the oblong to round adaptors and use bins like Harvey and Underdun, even if you just screwed a couple of tea chests as a rough and ready or better still large storage boxes like the black ones a Costco or the transparent one from Meiste. Also rather that weigh what you have collected in the buckets, weight the exit filter before and after. That way your are not second guessing how much is left in hoses etc.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +9

      Ah, weighing the air filter before/after. That’s a great idea… thanks!

  • @SquireJethro
    @SquireJethro 4 месяца назад +19

    Looking at the Harvey cutaway, they have a much more aggressive pitch on their vortex generator. Thier's are more of a "J" shape and yours are an "S" shape. I think they are getting a much higher rotational speed, and therefore more centrifugal force for separation.
    With a bright light and slow motion on your camera, you might be able to measure your rotational speed if you can see the particles through the tube well enough. Harvey claims 4000 rpm, which is ~66 revs/second. At a frame rate of 120 fps, a particle would be half way (180º) around the tube from one image frame to the next.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +12

      Good eye. I completely agree on the pitch of the fins. I just went back and more closely matched the pitch of the commercial unit. You can view on the product page for the 3D files at github.com/pilsonguitars/centrifugalDustSeparator. I'll be testing that unit just as soon as I can pull everything back apart and add the new part.
      I hadn't noticed the specs on the rotational speed on the site. Great info and thanks for calling attention to that. Best I can do is the slow motion setting on my phone and possibly catch it that way. You've got me interested. Great idea!

    • @timplett1
      @timplett1 4 месяца назад +1

      Yep, this caught my eye immediately when I saw your printed part. Seems to be a lot of particles that should be swirling around the tube are being redirected to go straight along the tube because of how your fins curve back.

    • @PasqualD
      @PasqualD 4 месяца назад +1

      @@pilsonguitars. I just tried to download the 3D print files but they seem to be “out of stock”. 😢 Any chance of getting a copy please?

    • @spencerjw
      @spencerjw 4 месяца назад

      @@pilsonguitars Getting the same error others are getting, that the file is out fo stock.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Files are available for free at: github.com/pilsonguitars/centrifugalDustSeparator

  • @JohnSmith-ud9ex
    @JohnSmith-ud9ex 4 месяца назад +20

    Adjustable air speed/flow is definitely something to look at and relatively easy to implement with a speed controller on the motor. I think the "dwell" duration of the particles as they pass through could have the biggest impact on the filtration efficacy = ) Great video edit, very informative and detailed !

    • @yuyilis
      @yuyilis 4 месяца назад

      I agree with you, definitely the diameter of the tube and the speed of the air affect the time it takes for the particles to cross the different obstacles, affecting the performance of the filter. Some of the variables (fluid speed -air- or tube diameter) must be adjusted to optimize filter performance. great job too @pilson guitars

    • @mechanoid5739
      @mechanoid5739 4 месяца назад +1

      Exactly what I thought. There must be a sweet spot for the air velocity for the size of the separators.

  • @DrDsHere
    @DrDsHere 4 месяца назад +2

    Try a ridge on the downwind side of the exhaust ports to deflect solids into the cans.

  • @C-M-E
    @C-M-E 4 месяца назад

    As a bonafide member of the "If it's worth doing, it's worth Overdoing" club, getting anywhere above 93% effective filtration just out of a vortex setup is quite an achievement. If you really want to get into stupid effective filtration, a downstream in/out airbox with MERV 13 fabric pleated between fine stainless mesh (and if you want to go Full Overkill, an inner ring of carbon mesh fabric), both of which can be had quite cheaply, will get you down into the .3 micron area. I use this exact setup on my bulk VOC filter/capture system for resin printer exhaust in my print room, though I suspect you have a much more powerful air pump than I employ, in which case you'll definitely be in good shape with the extra CFM headroom.
    Now it does come with the caveat that you have to keep up with the maintenance as it captures dang near everything, but if keeping the extremely fine particulates out of your breathable air space is a top priority, this will be cleaner than the air in a hospital surgical room.

  • @Wordsnwood
    @Wordsnwood 4 месяца назад +11

    Fascinating to see someone follow up on the Underdunn video.
    Huge amount of work to design and print those files!

  • @BeepBoopHmmm
    @BeepBoopHmmm 4 месяца назад +2

    The buckets will collect more dust if you give them a little exhaust also. Maybe some filter cloth over an array of half inch holes. There is back pressure in those buckets preventing the particles from going in there.

  • @snowman333-
    @snowman333- 4 месяца назад +1

    that separator reminds me of my cyclonic air filter for my dune buggy

  • @siggyincr7447
    @siggyincr7447 4 месяца назад +3

    One thing that would help the finer stuff make it down into the bins would be to allow for some air to escape them (through a piece of filter material). As it is with them well sealed, the dust has to fall in by gravity alone while swirling around in there. The smaller the particle the more unlikely that is going to be. By putting a hole in the lid of the bucket the back pressure on the final filter would already be enough to create a gentle air current down to the collection bucket. The trick would of course be to have enough air flow to help the dust down, but not enough to lift it up to the exhaust hole. So some sort of flow regulator would probably be needed.
    On a side note, you might want to dial the volume on the music back a bit. I found myself turning it up when you spoke and back down when the music came on.

    • @toddharshbarger8616
      @toddharshbarger8616 4 месяца назад

      If the bucket is open as you suggest it will improve dust collection at that end but will reduce overall air flow reducing system proficiency. In other words, greater percent of the dust will end up in the bin but less effective collection at the tool end unless bigger fan using more power…

    • @siggyincr7447
      @siggyincr7447 4 месяца назад

      @@toddharshbarger8616 How so? This seems to be mounted on the exhaust of the blower, not the intake.

  • @davidclark5975
    @davidclark5975 4 месяца назад +7

    I watched the UnderDone video a while ago and just finished watching yours. Both of your videos were extremely informative. I use an Oneida cyclone separator which sits on a 35 gallon metal trash can. Instead of using a HEPA filter as the end catch all, I vent whatever is left thru a window or my overhead exhaust system, which exits to the outside. There is so little residual dust left that the excess vented out just is picked up by the wind and deposited on the ground somewhere. All I cut are wood products, so it is just the fine wood particles that are vented out. Great content!

  • @Argosh
    @Argosh 4 месяца назад +1

    I personally like drilling a couple holes, especially in the corners when cutting thermoplastics. Makes the nightmare of remelted nasty slightly shorter.

  • @ladedk
    @ladedk 4 месяца назад +1

    I would do something to extend the life of the HEPA filter, like a coarser filtermat lining it, which is easy and cheap to clean out or replace.

  • @BuckRogers2491
    @BuckRogers2491 2 месяца назад

    When I saw the video title, I wondered if you had seen Under Dunn's build video. Sure enough.

    • @pilsonguitars
      @pilsonguitars  2 месяца назад

      Watching his build was educational (and a little frightening). I tried to expand on some of the challenges he ran into. Great video!

  • @TSSolutionsPro
    @TSSolutionsPro 4 месяца назад +1

    by the way if you open up the throat at the exit were the dust is being collected it will reduce the velocity of the air and allow the dust to settle rather than staying suspended in the air flow. This is also why the commercial one with the larger diameter does better, job of separating particulates from the air.

  • @gppl77
    @gppl77 4 месяца назад +1

    By having bigger diameter, 8" vs 6", they (1)put more centrifugal force on particles and (2)are getting them farther away from the central stream of air that goes to filter. These two drives more dust to end up in bins instead of filter.

  • @keithtysdal4274
    @keithtysdal4274 4 месяца назад +1

    I built one as well but made mine 8 inches in dim.I used1/2 inch threaded rod and 3d printed threads in the components. I have nothing escaping the discharge works well

  • @jamesmoreno4155
    @jamesmoreno4155 4 месяца назад +1

    I would add the blower on the filter side of things not the intake side. Less damage on the blower

  • @FabricateUnclear
    @FabricateUnclear 4 месяца назад +1

    gotta say, the production value on this video is amazing! great work!

  • @markgambrill
    @markgambrill 4 месяца назад

    I'm only 6 minutes in and already enjoying your approach to explaining the build and the editing. Enough glitz to make it enjoyable but still showing the engineering challenges.
    I've just seen that you only have 1k subscribers!!!!!! That cant be right for such a well produced channel.

  • @Chris-lf2li
    @Chris-lf2li 4 месяца назад

    i saw the under dunn video a week ago you have no idea how excited i was when i saw you already designed the full system, now i can print it to!! hope your channel gains some track so we see more of this content in the future, im already looking forward to more

  • @WoodworkJourney
    @WoodworkJourney 4 месяца назад

    Fantastic video, I really enjoyed your approach to making this kind of dust collection.

  • @christopherlaborde1670
    @christopherlaborde1670 4 месяца назад

    This was an incredible build video - THANK YOU

  • @nitsuadivad
    @nitsuadivad 3 месяца назад +1

    Separation will be proportional to the centrifugal forces. It may be harder to get higher forces with the smaller 6inch tube.

  • @jimrosson6702
    @jimrosson6702 4 месяца назад +2

    Great video and great tips for us woodworkers on a budget and need dust collection system so thanks for sharing

  • @jaeseopark729
    @jaeseopark729 4 месяца назад

    great work! i really enjoyed watching it.

  • @showaltern
    @showaltern 4 месяца назад +1

    Wow, great job on the design. I've been thinking of doing this myself, but beyond my current design skillset.

  • @CALDues
    @CALDues 4 месяца назад +3

    Some of us are looking for low profile (horizontal vs vertical) and the only choice we had was Harvey, Jet, and Under Dunn (who said he wouldn't recommend). Now we have yours, and I think you nailed it. Thanks for the amazing content! Great parting line also. 👊

  • @marvistawoodworks7624
    @marvistawoodworks7624 4 месяца назад +1

    FYI, the Harvey G700 sells for less than $2,500 and they occasionally have sales.

  • @GamaTrava
    @GamaTrava 4 месяца назад +1

    What a great project!
    Thank you for the 3d print files.
    I wish I had a technical drawing.

  • @TheZooloo10
    @TheZooloo10 4 месяца назад

    wow great video, and especially nice to include STL's, ill be trying it out eventually

  • @mitchellquinn
    @mitchellquinn 4 месяца назад +2

    In addition to what others have suggested regarding smoothing of the printed surfaces and the angle of the fins, it seems to me that having a larger diameter seperator could make quite a difference in extraction efficiency.

    • @avulonanderson2372
      @avulonanderson2372 4 месяца назад

      I'd also suggest narrowing the outlet port from the separator to only take cleaner air from the center of the vortex.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      I scaled everything down from the commercial setup, so it should match, but the physics may not scale the same. It’s an interesting thought.

  • @Renrondog
    @Renrondog 4 месяца назад +2

    Excellent video, I'm impressed by the amount of work and time you invested in the manufacture of your cyclone. Bravo.
    I have built a Pentz style I use in my shop with a modified Harbor freight motor with upgraded impeller. After 1.5 years of dust collection I checked the filter and had less than 3 tablespoons of dust in there. Mine is huge thou, almost 8 ft tall and not as cool looking as your build. Congratulation on a cleaner shop and lungs.

  • @DotaBillfuc
    @DotaBillfuc 4 месяца назад

    This is brilliant!

  • @hillsendswe
    @hillsendswe 4 месяца назад +1

    Damn thought about this a lot and you come along with ready files and everything!

  • @jrousselo
    @jrousselo 4 месяца назад +1

    Excellent work! And sharing the .STL files.. thank you

  • @dingsda5660
    @dingsda5660 4 месяца назад

    great job!

  • @GreenEyedIrishman
    @GreenEyedIrishman 4 месяца назад

    Came here for the dust collection, subscribed because that's the best DIY for this I've seen. And I love guitars, so bonus!

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Thank you so much... really appreciate it!

  • @bloodgain
    @bloodgain Месяц назад

    For cleaning the edges of plastic after cutting, I highly recommend a deburring tool. It's just a handle with a little swiveling curved carbide cutter, but it makes super clean edges without the struggle of filing. Works on metal, too, so it's super useful to have around the shop.

  • @kellysnodgrass2236
    @kellysnodgrass2236 4 месяца назад

    Nice stuff! your videos are so entertaining and informative. I really appreciate what you do!

  • @acb_gamez
    @acb_gamez 4 месяца назад +2

    Awesome video! I am a hobbyist woodworker with some 3d printer skills and had the same thought when I saw this system. Moving this from the idea list to the project list!
    Also, excited to see how fast your channel grows. I was shocked to see you had

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Very kind words. I really appreciate it! Would love to hear about your experiences as you build!

    • @jimcoleman52
      @jimcoleman52 4 месяца назад +1

      ​@@pilsonguitars less than 1k, plus one after seeing this video. After years of watching, I'm always surprised to find as good of projects and production quality. Like another commentor, I wouldn't mind if the music was normalised a couple db lower in comparison to the dialog.

  • @Lmeyer23
    @Lmeyer23 4 месяца назад

    excellent job!

  • @casterman2
    @casterman2 4 месяца назад

    Great video!

  • @ds50327
    @ds50327 4 месяца назад

    Whoa! whether this works or not, I want one. Super cool!

  • @peternickerson2911
    @peternickerson2911 4 месяца назад +1

    Super cool. One thing I have learned with 3d printing is when you have to do really tight press fits it is always a massive pain. But I found that putting g a gradual chamfer on face that is going to be doing the press fitting helps align it all and makes it easier to push in. Really neat video!

  • @brandoncorrea5403
    @brandoncorrea5403 4 месяца назад +1

    Man this is really well done! I will probably try to replicate your work thanks so much for the inspiration to finally get some dust collection setup for my small shop!

  • @bradleytuckwell4881
    @bradleytuckwell4881 4 месяца назад

    I really enjoyed watching and I think you’ve got a money maker there printing the separators as a kit they look a fun build plus they look great

  • @GunnerAl9
    @GunnerAl9 4 месяца назад +1

    Very impressive build off your 3d Printer. Impressive build and video. To the point, good voice excellent details provided.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Thank you for the feedback and encouragement! Much appreciated!

  • @crazy-eyewoodguy4489
    @crazy-eyewoodguy4489 4 месяца назад +3

    well, you've earned a sub-I really appreciate you offering the plans. This is something I'll be getting soon. Like others have mentioned a smaller version would be great for shop vacs. Im sure you could just scale the file down for that. Thanks for taking the time!

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +1

      Thanks so much for watching and subscribing!
      Technically, if you have a 3D printer setup, you should be able to just down-scale the STL's in your slicer to whatever you need. You'd just need to run a few tests to get the tolerance right for the tube size. I'd be interested in the results if you try it. Curious whether the cyclone continues to function well enough on the smaller sizes.

  • @diymco2728
    @diymco2728 4 месяца назад +2

    This is impressive. If i had a 3d printer, i had the idea of having the tube spin thus creating more centrfugal force. Having it spin really fast and lengthening the tube and "propeller" inside may catch more of the fine stuff. Also, another idea i had was one you get to the ultra fine mist stage, injecting water mist or high humidity would make it fall.

    • @rzkharris
      @rzkharris 4 месяца назад

      One of those ultra sonic disk misters like fogponics

    • @diymco2728
      @diymco2728 4 месяца назад

      @rzkharris greatidea. I also wonder if the canister that has the final filter, if you build the housing in such a way that water is at the bottom. Have a 90 degree elbow so when air enters the canister is immediately is directed down into the water. That should also catch a ton of fine dust

  • @shakdidagalimal
    @shakdidagalimal 4 месяца назад

    Well done.

  • @johnbrooks1422
    @johnbrooks1422 4 месяца назад

    Hi Like the Centrifugal Dust Separator - Dust Collection You Made Good VIDEO

  • @marchingknight11
    @marchingknight11 4 месяца назад +4

    You might consider smoothing your 3d prints with some kind of filler. I've seen people use bondo then sand it back. The turbulence the air encounters when it hits the layer lines could be impacting the efficiency of the separation

  • @LT-gj3rm
    @LT-gj3rm 4 месяца назад

    Well done. I bought the files and my 3D printer is already printing. Hope to finishes in few days. Clear pipe is on the way.

  • @jamesmoreno4155
    @jamesmoreno4155 4 месяца назад

    But man this was exactly my thought when watching the under Dunn video

  • @col2lin
    @col2lin 4 месяца назад +1

    This is the first time that I have come across your channal.
    I am impressed!
    I will be keeping an eye on what you get up to.
    Thanks

  • @patrickd9551
    @patrickd9551 4 месяца назад

    This was exactly in my mind when I saw Under Dunn's video. Why not upgrade to 3D printing. Thankfully someone picked it up and somehow the youtube algoritm actually was being useful for me.

  • @moonolyth
    @moonolyth 2 месяца назад

    NICE DRAFTING ON THE PARTS!! looks like a lot of work compared to a simple build but love the effort and intelligence.

    • @pilsonguitars
      @pilsonguitars  2 месяца назад

      Really appreciate it! Yah, from an overall effort standpoint, probably more work than it's worth, but since I put the time in, I wanted it to be something that benefitted others too.

  • @bitsRboolean
    @bitsRboolean 4 месяца назад

    just found your channel, and yay lefty! As a fellow lefty I am just now realizing the extent to which I have just pretended the monitor is a mirror and how backwards it feels to watch someone do things leftwardly lol

  • @jandrewmore
    @jandrewmore 4 месяца назад +4

    Great vid. I'm a bit addicted to watching people struggle with dust collection, it's a fun engineering challenge for me. Good job on getting as far as you did. Be interested to see what solution you might come up with for miter saws, they seem to be another massive problem in terms of DC.

    • @grahamashton6205
      @grahamashton6205 4 месяца назад

      Creative problem solving entertainment is pricesless

  • @patw999
    @patw999 4 месяца назад +6

    Great video, really liked this. A few points your missing, big companies have flow meters and dynamic drawing that can do all of that flow testing you can’t. They know exactly how much cfm they are drawing, hose resistance and all that fun stuff. Plus 3d prints aren’t as smooth as what they are doing so how much does that affect dust collection too? Also you dropped your diameter 2”s which is pretty significant in the speed that your dust is moving compared to theirs. Overall you did a great job and I applaud your effort.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +2

      Appreciate the feedback. Yes, exactly right. Without all the fancy measuring tools, all I can do is trial and error. I think I mostly ended up with something functional for my shop, so that's a win. Totally agree on the 3D printed parts. The commercial version has shiny, stainless steel parts that offer minimal resistance. Reducing the volume of the tube is likely a bigger impact than I anticipated. I would probably have to go to a 3rd tube to compensate, but then I may be at a cost point that doesn't justify increasing to the 8" tube. I did grab an anemometer to check airflow at several points the other day. Added those metrics to the description of the video.

    • @commonsense5105
      @commonsense5105 4 месяца назад

      ​@@pilsonguitars The linear velocity of the particles through a pipe is proportional to the cross sectional area of the pipe for a given cfm. So even though adding an additional cyclone sounds like an improvement, which it would be vs 2, because it will help slow things down, do a quick check of (3) 6" cyclones versus (2) 8" cyclones areas and you'll see that it still will be short compared to the(2) 8" diameter cyclones.

  • @regkeown8914
    @regkeown8914 3 месяца назад +1

    here's a radical idea; you spoke about reducing the flow velocity ( to allow particulate to settle out of the airstream ) by increasing the cross sectional capacity, but I never heard you focus on the second most important factor -- gravity. why don't you try setting the system to vertical flow entering at the bottom and exiting at the top while re-aiming your dust exit ports to 45 decrees down cyclone. by having the entire system horizontal ,you limit the distance of the particulate from the main core of flow so the particles still contain the energy imparted on them. If you extend the distance from the source of power - you increase the differential between that power and the constant pull of gravity on the fixed mass of the particle. just a guess.

  • @andytroo
    @andytroo 4 месяца назад

    the vacuum cleaner i have has an offset inlet to force a cyclone - the air exits only from the center, and the dust exits from the edge, thrown there by the spinning air. there is a cone with a fine mesh in the center that the air exits through. a perforated cylinder in the center to allow air through to the next separation area and a baffle to prevent air near the edge (which has lots of dust in it). A wider radius would also help, a larger difference between the edge and the center, and a longer dwell time would give more time for centripetal force to separate the air .

  • @tufanaslan627
    @tufanaslan627 4 месяца назад

    this is abosolutely awesome video probabaly watched couple of times all 3 videos. and thanks for the all STL files I am building exactly same as yours. I am so excited. Thank you

  • @vbaspcppguy
    @vbaspcppguy 4 месяца назад

    This is pretty cool. I have a G700 I bought used and I love it. I just wanted to say, before you expand your dust storage check how much actually goes into your second container, in the G700, the bins are about 80/20 in size and the secondary never fills more than about 1/3 for each main bin fill.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +1

      Yes, I noticed that in their design too. My original thought was to custom build the collection bin to more closely match the commercial version but wanted to wait to see if the system worked first. Possibly a future modification.

  • @dsluo
    @dsluo 4 месяца назад +2

    I've been working on something similar for my shop, although I have probably spent way too much time in CAD designing everything. I pulled up their marketing pictures, manuals, and even their patents to basically reverse engineer it.
    I chose to go with two shorter pieces of 8" tubing I got off Amazon to get the length that I want, thinking that if the Harvey unit has a 2HP blower, and I have a 1HP blower, that I should probably use the same diameter. The CFM I get out of my unit also seemed to support this
    I also have the turbine be a friction fit on the inside of the tube with a threaded rod holding the turbine, the front chip separator, and the end cone together.
    I've still yet to figure out what exactly I'm doing with regards to filter the output, but at this point, I should probably get to actually building the thing.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +2

      That’s exciting! I would love to hear how it comes out. Maybe you can shoot some videos of your test and share with everyone too. Good luck on your build. I hope it sucks! (in a good way) 😁

  • @suesheane3671
    @suesheane3671 4 месяца назад

    Enjoyed the whole project idea and video, and agreed the background music was on the loud side.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Thanks for watching! We’ll work on the mix going forward.

  • @akbychoice
    @akbychoice 4 месяца назад +1

    In some ways it reminds me of our Dyson vacuum.

  • @ruudjacobs8337
    @ruudjacobs8337 4 месяца назад

    Excellent video. Well done. I bought the files and my 3D printer is already printing. I'm planning on using this with a Record Power CamVac.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Excellent! Interested in hearing your results. Happy building!

    • @ruudjacobs8337
      @ruudjacobs8337 4 месяца назад

      I have analysed the video of Harvey again and compared it in cad to the stl-files and I believe that the inlet diameter is smaller with Harvey compared to the outer tube. Also the distance from the front cone to the inlet is much smaller with Harvey. I think this was done to keep the volume the same from the inlet up to the widest part of the first cone. After that, the volume increases and the speed and pressure decreases so that particles go down sooner. I will adjust the design to see that this increases the efficiency.@@pilsonguitars

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      That straight-on pic on their site with the parts shown in stainless steel is where I spent the most time analyzing how things fit together. (and then scaling down to the 6" tube) I do see the difference in the inlet port. It looks like they have a 4" port that expands into the 8" tube, which would be a different effect than 4" going into 6". If you need some source files (STEP) to work with instead of trying to play with STL's, let me know.@@ruudjacobs8337

    • @ruudjacobs8337
      @ruudjacobs8337 4 месяца назад +1

      Yesterday I completely redesigned the design of the impellor in Inventor. I reduced the intake to 3". And now I'm trying to print the impellor as 1 part and to be able to attach the nose cone with a long bolt. As a result, I hope to get rid of the nose cone supports in the intake. The print takes 12 hours on my Bambu Lab X1C. So i have to be patience. The 6" PVC pipe will arrive next week. If I have test results I'll be sure to let you know. @@pilsonguitars

  • @NitroHDB
    @NitroHDB 4 месяца назад +1

    Personal opinion as a chemical engineer, a cyclone system would be much simpler to design and has solid science behind it (i.e. you can calculate what particle size you will separate out) and a proven track record. Very interesting project though!

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +1

      Yep, no disagreement here. My path was not the easy path, it was simply the “well that’s interesting” path. If I was going to buy something, the steel cyclone from Oneida would be my first choice.

  • @kevinrose8568
    @kevinrose8568 4 месяца назад +1

    If you can do it, just use the blower on your current system and vent it outside into a vented bin. It will increase your cfm's and just get rid of the dust to the outside.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +1

      For a lot of shops, that works well. For our shop, we have environmental controls for the guitars. (temp & humidity) Venting to the outside creates negative pressure in the building, forcing outside air in. (and it happens quick)

    • @kevinrose8568
      @kevinrose8568 4 месяца назад

      Understandable. Nice build. @@pilsonguitars

  • @grumblycurmudgeon
    @grumblycurmudgeon 4 месяца назад

    The fact you posted those STLs just bought you a like, sub, AND a share! Outstanding work! And I do think I know what you can do here to up your capture. Will report back.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Much appreciated! The STEP files are out there too if you need to make any modifications.

  • @AlekcandrPozzy
    @AlekcandrPozzy 4 месяца назад

    Have you tried the vertical approach taken by most shop vac bucket dust separators? Gravity assist could improve the performance further. Also check out how rainbow vacuums do their water-air separation, what they have in common is that the outlet is the high point of the system, with the cyclone below

  • @rodfrey
    @rodfrey 4 месяца назад +1

    Subscriber 564. Just wanted to say that so that when I'm arguing with one of your 1M subscribers 2 years from now I can dismiss them with a "yeah, well I was watching this channel back when..."

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Hah, I love it! Thanks so much for being a part of the channel. Really appreciate it.

  • @biggiecheeyz
    @biggiecheeyz 4 месяца назад +1

    nice watch

  • @FuhrChris
    @FuhrChris 4 месяца назад +1

    The larger buckets should have some form of air vent/filter on them. I think you're having flow problems in that even the 35 gallon buckets will have pressure from the fan and giving that pressure somewhere else to be will improve flow.

  • @andrewduff3452
    @andrewduff3452 4 месяца назад

    Excellent work....I feel your pain in cutting the plastic 😂

  • @haydenc2742
    @haydenc2742 4 месяца назад

    Larger diameter tube = greater centrifugal force of the spin of the dust, greater centrifugal force = more of the "light" stuff get's spun out...
    Your design works awesomely...and even though more of the "light" stuff get's by, the hepa filter on the end catches it...but like you said, it will take more cleaning out
    Very cool design and build!!!!

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Good points. Appreciate the feedback and thanks for watching!

  • @1man1guitarletsgo
    @1man1guitarletsgo 4 месяца назад +1

    I only have a small, hobby setup. I bought a cyclone from eBay, which I fitted to the top of a plasterer's bucket, with the outlet connected to an Axminster shop vacuum. It cost probably £20 for the bits (I already had the shop vac). It's ok, but for a bigger shop a professional setup would be essential.

  • @user-st5je4nq9x
    @user-st5je4nq9x 4 месяца назад

    I would love to see another video where you introduce something like smoke along with the wood chips to see how the air is moving inside. Great job and great video - New Sub

  • @adamdemirs3466
    @adamdemirs3466 4 месяца назад +1

    I have almost the exact same set up. Mine is a 3 horse grizzly instead of the hf model.

  • @ShuhDonk
    @ShuhDonk 4 месяца назад +1

    I own the Harvey G700, but it is still in the crate (bought it on sale for 2500+freight). I would have had fun building one instead after seeing this video :)

  • @phillipbox7957
    @phillipbox7957 4 месяца назад

    Great project maybe put them in series.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      It’s a great idea. We tackle that in the next video. Thanks for watching!

  • @peterszutu555
    @peterszutu555 4 месяца назад +1

    Love it if you could sell the 3D printed parts as a kit.

  • @codarussell7925
    @codarussell7925 4 месяца назад +2

    Awesome build. You should release or sell the 3D files for this build.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Thanks! You can grab the files for 3D printing from here. github.com/pilsonguitars/centrifugalDustSeparator

    • @arvana
      @arvana 4 месяца назад

      ​@@pilsonguitarsBe careful about patent infringement - my understanding is that patents allow you to copy a design for personal use or research, but if you are profiting off a patented design then you may be open to liability. I don't know if Harvey holds patents on this cyclone design but it seems likely.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Yah, understood. I have reached out to the Harvey folks.

    • @robertkrolewski1333
      @robertkrolewski1333 4 месяца назад +1

      I tried to buy the files and it says out of stock.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +1

      New link for the files in the description of the video. They are free to download here: github.com/pilsonguitars/centrifugalDustSeparator

  • @Fangoryn
    @Fangoryn 4 месяца назад +1

    Great video. Only thigh I would improve is to smooth the surface of printed elements. It should improve airflow and reduce micro turbulence.

  • @frijoli9579
    @frijoli9579 4 месяца назад +1

    Very interesting video and build. Might consider leveling the volume between your voice and the music blasts.

  • @martinpowell5857
    @martinpowell5857 4 месяца назад +1

    Toothed saw blades cut plastic way better on Dremel type tools. Those abrasive discs are probably melting more than "cutting". I know 'cos I did just the same - the clean-up of melted plastic took longer than the cut ;)

  • @boooshes
    @boooshes 4 месяца назад

    Another thought on the amount of fines escaping - if you have room, you may try lengthening the tubes and give more area to the ejection port (into the bucket) so that there is a better chance the particles get thrown out of the airstream before the exit port. It would be nice to be able to experiment with that.

  • @daveworkman5213
    @daveworkman5213 4 месяца назад +1

    Thanks for making the files available! I wonder about the size, 6 vs 8 inch being the explanation of the decreased efficiency. The area of 2 6 inch tubes is around 57.5 inches compared with ~100.5 inches on an 8 inch tube. Still around half.
    I also think it would be interesting to see how it would perform being at the inlet side like a cyclone vs outlet. Although set up like that your exposing your 3D printer parts to any objects you may accidentally suck up.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +10

      I’m making an update to the impeller. I had someone reach out to me and note the angle of the fins on my version were much shallower than the Harvey version. I went back and analyzed and matched their pitch. That should help spin the material out to the sides more and provide better collection.
      I did think about the push vs. pull through the separator. I was curious whether that would decrease throughput or not. Might have to test.

  • @bennyhill3642
    @bennyhill3642 4 месяца назад

    Gr8 vid thanks😇😁

  • @generaldisarray
    @generaldisarray 4 месяца назад

    Great video. Just wondering if inclining the seperators, so the higher end is toward the HEPA filter, would improve the collection results. You may have to adjust the angle of the tubes to the collection buckets so they're plumb but you could go with the tubes you have for initial testing.

  • @bwiltse2620
    @bwiltse2620 4 месяца назад +1

    The difference in separation efficiency you're seeing compared to the Harvey unit is likely related to you using 6" tubing vs their 8" tubing. The separation efficiency is driven in large part by how hard you can "throw" the particles to the outside. Using a larger diameter pipe, the dust particles will experience a significantly higher acceleration (perhaps as much as double the force by going from 6" to 8") while spiinning around the tubing, leading to better separation efficiency. If you wanted to improve the separation efficiency and you wanted to try a brand new design, you might try using 8" tubing for the next one.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад +1

      Yah, I agree. I just didn’t have a large enough printer bed to run the 8” size. I figured likely others didn’t as well. So my setup will likely not be as efficient, but we’ll continue to tune and try to improve. Thanks for the feedback.

    • @bwiltse2620
      @bwiltse2620 4 месяца назад

      @@pilsonguitars Understood. I certainly don't have a large enough 3D printer for an 8" setup either! Super cool you attempted this and was fun to watch. Thanks for sharing!

  • @ianloy1854
    @ianloy1854 4 месяца назад

    Awesome SERIES of videos showing your journey. Now please be SUPER careful when you clean, in particular, the final filter. It will be full of particles you CAN'T see, but are the ones that injure your health. Properly fitted mask and disposal so that anything that escapes can't be breathed in by you or someone else. Remember the particles are the size of viruses so they don't just fall out of the air quickly. Also don't do anything to damage the filter surfaces, high pressure air, beaters (like Harvey) etc. they will just create a path for the ultra-fines to get through.

    • @pilsonguitars
      @pilsonguitars  4 месяца назад

      Thanks for the kind words and feedback. I was considering just masking up and using the compressor to blow out the filter outside. Sounds like maybe the compressed air is bad for the filter? Any other suggestions for cleaning?