Integral of 1/(1 + e^x)

Поделиться
HTML-код
  • Опубликовано: 2 фев 2025

Комментарии • 6

  • @d-hat-vr2002
    @d-hat-vr2002 8 часов назад +1

    At 3:08 a partial fractions decomposition would be much easier for most people, compared to the un-motivated manipulation of the numerator shown.

  • @gelbkehlchen
    @gelbkehlchen 7 часов назад

    Solution:
    1 1 1
    ∫1/(1+e^x)*dx = ∫(1+e^x)/(1+e^x)*dx-∫e^x/(1+e^x)*dx
    0 0 0
    1 1
    = ∫dx-∫e^x/(1+e^x)*dx =
    0 0
    ----------------------------
    Substitution for the 2nd integral: u = 1+e^x du = e^x*dx
    lower limit = 1+e^0 = 1+1 = 2 upper limit = 1+e^1 = 1+e
    ----------------------------
    1 1+e 1+e
    = [x]-∫1/u*du = 1-[ln|u|] = 1-[ln(1+e)-ln(2)] = 1+ln(2)-ln(1+e)
    0 2 2
    = 1+ln[2/(1+e)] ≈ 0,3799

  • @wasimvillidad3000
    @wasimvillidad3000 20 часов назад

    Holy headache! 1/(1 + e^x) = 1 - [e^x/(1 + e^x)]
    I = x - ln(1 + e^x)
    Answer: 1 + ln2 - ln(1 + e)

  • @桜木秋水
    @桜木秋水 20 часов назад

    ∫dx/(1+e^x)
    =∫e^-x/(e^-x+1)
    =-ln(e^-x+1) + C

    • @CalculusIsFun1
      @CalculusIsFun1 19 часов назад

      That’s not what the original question was asking. The question wanted the *definite* integral from 0 to 1 of 1/(e^x + 1), not the indefinite integral.
      I think you missed a step.

    • @CalculusIsFun1
      @CalculusIsFun1 6 часов назад

      @@d-hat-vr2002 Yes, and they didn’t do that. That’s my entire point. They only found the anti derivative and never actually used it to find the area under that curve from 0 to 1.