+++ Reaktion auf Kommentare +++ 1) Erfreulich zu lesen, dass viele das Vierfelderschema noch nicht kannten und daher Gewinn aus dem Video ziehen konnten. Natürlich kann man diese Aufgabe auch ohne jede Technik lösen, einfach nur durch Logik. Den oft gelesenen Vorwurf, das vorgetragene Schema dokumentiere die Hilflosigkeit der heutigen Schüler, weise ich allerdings entschieden zurück. Letztlich unterstützt es das Verständnis, v.a. bei Schülern, denen Mathe nicht so leichtfällt. 3) Manche behaupten, die Aufgabe sei nicht eindeutig gestellt. Ist sie natürlich schon. Wenn es z.B. heißt "75 sprechen Deutsch", so wird in diesem Satz keine Aussage über andere Sprachen getroffen. Es heißt weder "75 sprechen nur Deutsch" noch "75 sprechen unter anderem Deutsch". In Kombination lassen die Angaben nur eine einzige Antwort zu, wie die Vierfeldertafel zeigt. Weit verbreitet ist der spezielle Irrglaube, es könnten maximal alle 75 Deutschsprechende auch Russisch sprechen. Wie soll das bei 100 Personen auf dem Schiff funktionieren? Dann müsste in das Feld links unten 0 und in das Feld rechts daneben ebenfalls 17 eingetragen werden, da ja insgesamt 100-83=17 nicht Russisch sprechen. Das widerspricht aber der Angabe "10" für das Feld rechts unten. 4) Meine Einlassungen zum Thema "Bildungsmisere" gefielen erwartungsgemäß nicht jedem. Das ist ok, wobei ich Vorwürfe wie "arroganter Lehrer" dann doch etwas seltsam finde. Warum lasse ich mich auf das Thema ein und werde es auch in Zukunft - dosiert - immer wieder tun? Um zum Nachdenken anzuregen. Wollen wir ein Land sein, das im internationalen Vergleich immer weiter absinkt? Was ist davon zu halten, dass die Abi-Schnitte trotz dieser negativen Entwicklung immer besser werden? Ist es gut, wenn 60% der Grundschüler ans Gymnasium übertreten und Realschulen und Mittelschulen zu Resterampen verkommen? Wenn ich nur ein paar Leute dazu anregen kann, mal genauer hinzusehen, welche Schulpolitik zu welchen messbaren Ergebnissen führt, dann war es die Sache wert. Und keine Sorge: das Thema ist kein Dauerbrenner auf meinem Kanal, in 90% der Videos geht es allein um Mathe :-)
Nach meiner Meinung kannst du das gerne öfter tun, es kann nicht falsch sein, wenn du dich äußerst was besser gemacht werden könnte. Was man meiner Meinung nach besser machen könnte, hab ich dir ja bereits im anderen Kommentar geschrieben.
Allein die Unterschiede zwischen den Bundesländern sind enorm groß und das sollte jedem zu denken geben... Wie kann es sein, dass das Abi in Hamburg / Bremen / Berlin so viel wert ist im Endeffekt wie ein Realschulabschluss in Bayern, vllt sogar Hauptschulabschluss? Irgendwas stimmt ganz gewaltig nicht... dann noch das Bulimie-Lernen also Masterplan, stete Orientierung an den Schlechtesten in der Klasse, sodass alle darunter leiden (heutzutage ist der Unterschied noch viel viel größer, da oft nicht einmal vernünftige Deutschkenntnisse vorhanden sind, selbst bei den -- aus Mangel eines besseren Wortes -- Biodeutschen ist das Sprachniveau unter aller Kanone!) Keine Sorge, ich will hier keineswegs auf das Migrationsthema anspielen, selbst wenn es eine Korrelation gibt ist es definitiv keine Kausalität also nur vorweg bitte keine Unterstellungen diesbezüglich. Unser Schulsystem ist wortwörtlich im A... Danke, dass du uns zeigst, dass wir nicht verrückt sind und es leider Gottes wirklich der Fall ist heutzutage! Lasst uns gemeinsam etwas dagegen tun und mehr Aufmerksamkeit darauf lenken, dass unsere Zukunft eine vernünftige und GUTE Bildung bekommt!
@@MrArkaneMageDer Unterschied zwischen den Bundesländern ist ein uraltes Thema...🥱 Ebenso "die Jugend von heute". Je älter wir werden, desto mehr glauben wir daran. Wir, die noch gute Bildung genossen haben und Leistung zeigten... Blicken wir 1, 2, 3 Generationen zurück, war es genau so. Blicken wir 1000 oder 2000 Jahre zurück, auch😊
@@telekommandos Ja, das mit den Bundesländern ist ein alter Hut... umso schlimmer, dass es nach fast 35 Jahren immer noch so ist - der erste große Fehler im System, den jeder kennt und keiner was tut. Glaube übrigens du verdrehst da was... Es geht hier keineswegs um "früher war alles besser", sondern um messbare Unterschiede! Insbesondere im internationalen Vergleich sinken wir immer weiter ab, was die PISA-Studien beweisen und wie der Herr schon meinte... wie kann es sein, dass wir in PISA immer schlechter werden, aber die Abi-Noten immer besser? Da stimmt etwas ganz gewaltig nicht am System. Zumal die Bildung im Laufe der Zeit immer BESSER geworden ist, zumindest bis vor kurzem. Bin übrigens noch keine 30 und es ist erschreckend zu sehen wie schnell es bergab geht. ^^
@@telekommandos Zitat Focus: "In Deutschland ist das Bildungsniveau in den letzten zehn Jahren stark gesunken. Das geht aus dem „Bildungsmonitor 2023“ hervor. Die Abhängigkeit von Bildungserfolg und sozialer Herkunft hat sich weiter vertieft."
Interessante Aufgabe! Ich bin 70 Jahre alt und in der DDR zur Schule gegangen. Ich konnte die Aufgabe noch im Kopf lösen. Die Vierfeldertafel kannte ich nicht, wieder etwas gelernt! Danke!
Also ich bin 22 und konnte es auch innert weniger Sekunden im Kopf lösen. Die Tafel hat mich (auch wenn ich sie lesen und verstehen kann) nur verwirrt 😅.
Was bei mir wahrscheinlich definitiv nachgelassen hat, im vergleich zu euch, ist die „Kopfrechnungsfähigkeit“, aber das geschieht halt, wenn man immer den Taschenrechner mit sich trägt. Aber das Verständnis hinter der Aufgabe, sehe ich wirklich nicht als schwer und diese Zahlen gehen auch noch gut im Kopf.
Ich bin Baujahr 82, aus dem tiefen Westen und habe die Fachhochschulreife. Habe es leider nicht hinbekommen. Aber Logik und Mathematik waren schon immer meine Problemfelder. Mir liegen Sprachen besser. Die Vierfelder-Tafel ist mir nie begegnet, auch nicht in der Mittel- und Oberstufe auf dem Gymnasium. Da bin ich mir ziemlich sicher. Wieder was dazu gelernt.
Dito. Gymnasium, älterer Jahrgang, von dieser Tafel nie was gehört und wie immer bei Textaufgaben zu viel gedacht statt gerechnet. Der Hinweis des Lehrers geschieht zurecht- und danke für die Lernhilfe :). Aber wie manche rumreiten auf der jungen Generation ist daneben. Und klingt noch dazu wie unsere eigene ältere Generation.
Baujahr 79, habs trotz 2 Glas Wein nach kurzem Nachdenken ausgerechnet. 4 Felder Tafel habe ich nicht gebraucht, habe es allerdings etwas umständlich gerechnet. 75+83=158, 158-90=68. Die Leute, die bei der Summe als 90 sind, müssen die sein, die doppelt gezählt wurden.
@@entaroardun Ich kann mir zwar nicht vorstellen, in welcher Art und Weise ich jemanden respektlos behandle durch die simple Feststellung der Tatsache, dass man früher den Kindern in der Schule noch gelehrt hat, selbständig zu denken, Probleme logisch zu erfassen und eine effiziente Lösung zu finden. Aber okay, wir sind ein freies Land, jeder soll seine Meinung haben. Fakt ist, dass das Wissen bei den heutigen Kids nur sehr sporadisch und selektiv vorhanden ist, und das auch nur, wenn die Eltern nach dem Unterricht zu Hause den Job des Lehrers übernehmen und den Kindern die Dinge beibringen, die wirklich wichtig sind. Wenn man heutzutage eine Schule hat mit sagen wir Mal 50 Lehrern, dann sind darunter maximal 3-4, den den Beruf tatsächlich aus Passion machen. Und selbst die können bei den versch... Schulsystem nicht viel machen, wenn die Klassen aus 30, 35 oder noch mehr Schülern bestehen, da kann der beste Lehrer nichts machen, wenn er nicht mal die Möglichkeit hat, sich so um seine Schüler zu kümmern, wie es nötig wäre, um eine einwandfreie Bildung garantieren zu können. Ergo, das Wissensniveau nimmt kontinuierlich ab, weil die Kinder zum einen nicht mehr lernen, wie man richtig lernt und zum Anderen nicht beigebracht bekommen, selbständig zu denken und so alleine auf Problemlösungen zu kommen. Und wer es nicht kapiert und der Zeit, die der Lehrer hat, um den Stoff 30 oder mehr Kids beizubringen, der kriegt das Lösungsheft in die Hand gedrückt und Brauch sich nur noch berieseln lassen. Auf das Fehlen von Schulnoten in den ersten Klassen will ich da gar nicht tiefer eingehen, nur soweit, dass die Kids dadurch nicht mal die Motivation haben, etwas zu lernen, es gibt ja schließlich keine negativen Konsequenzen. Vielleicht möchten Sie ja unter dieser Voraussetzung ihren Kommentar noch einmal überdenken. Für eine tiefer gehende Diskussion darüber bin ich jederzeit zu haben.
Was wäre denn unfair und respektlos? Sowas wie "Die Russen und die anderen Ausländer, die beide Sprachen nicht können, weisen wir aus, dann sparen wir uns das Rechnen"? 😂
90 die mindestens eine der beiden Sprachen können. 75 Deutsch bedeutet 15 kein Deutsch 83 Russisch bedeutet 7 kein Russisch 15+7=22 die nur eine Sprache sprechen 90-22=68 die beide können 🤷♂️ Die Technik nennt sich Logik 😅
Wobei man mit "Logik" nicht mehr so einfach weiterkommt, wenn man auf 5 Merkmale in 20 Ausprägungen geht und einen Chi^2-Test machen will. Dafür ist die einfache Vierfeldertafel extrem praktisch, um das umfangreichere Problem zu verstehen.
@@DornigeChanceoh doch: Es wurden 200 Jugendliche nach ihrem digitalen Konsumverhalten (weniger als 1h, 1h bis 3h, 3h bis 5h, mehr als 5h) befragt. Jetzt würde man ein paar Infos vorgeben. AFB 1 wäre, die Tabelle zu zeichnen und zu ergänzen. AFB 2 würde Fragen zu Wahrscheinlichkeiten stellen. AFB 3 könnte so aussehen: Bestimmen Sie, ob es einen signifikanten Unterschied zwischen Jungen und Mädchen gibt. Viel Spaß dabei, das ohne die Tafel zu machen
@ChristianOtto-b2g Die VORGABE eine Tabelle zu zeichnen ist keine Information über die 200 Jugendlichen, die einen weiter bringt . Die Jugendlichen könnten alle männlich sein, es gibt keine Info dazu in der Aufgabe. Wenn man laut "Info" eine Tabelle zeichnen MUSS , dann darf man sie nicht ohne lösen, selbst wenn man das könnte. Das ist Logik 🙃 LG
@@Thomas-w8p4q wer lesen kann, ist klar im Vorteil und willkommen auf der Meta-Ebene. Um über eine Aufgabe sprechen zu können müssen keine konkreten Infos vorgegeben werden. Aus Zeit- und Platzgründen habe ich darauf verzichtet, mir Zahlen auszudenken. Das könne Sie /kannst Du ja aber gerne machen. Im Übrigen ist auch 0 Jungs zu befragen kein Problem für die Aufgabe. Eine Tabelle zu zeichnen, ist nicht notwendig, aber sicherlich die übersichtlichere Art der Darstellung. Und wie immer fängt man nicht gleich bei einer 5×10-Tabelle an, sondern beim einfachsten sinnvollen Fall 2x2. Insbesondere wenn es um die Aufstellung der Test-Statistik geht, die über x_ij definiert wird, macht eine Tabelle mehr Sinn, als es über Ihre "Logik" zu versuchen.
ich hab's mit Mengen gelöst :-) von der Menge aller Personen (100) sprechen 10 weder Deutsch noch Russisch, bleiben 90 die Deutsch und/oder Russisch können. Die Menge aller Russisch sprechenden ist 83, die aller Deutsch sprechenden 75. Wären beide Mengen getrennt also 158. Diese Menge muss auf die 90 abgebildet werden, also müssen 158-90=68 beides sprechen. Vierfeldertafel ist aber einfacher 😀
@@Engy_Wuck Ich wüsste nicht mehr, ob wir in der DDR die Mengenlogiktabelle als Vierfeldertafel bezeichnet haben? Ich weiß aber noch, dass wir aus solchen Textaufgaben (in der Alt-BRD hieß es wohl „Sachaufgaben“) kreisförmige oder rechteckige Venn-Diagramme mit Schnitt- und Ausschlussmengen entwickelt haben, um dann die richtigen Teilmengen zu addieren oder zu subtrahieren.
In einer Vierfeldertafel steht in den vier zentralen Feldern jeweils der die Anzahl der Elemente des Durchschnitts zweier Mengen - die Vierfeldertafel benutzt also auch Mengen zur Darstellung.
@@herbertwedelmann395 In der Bundesrepublik hieß das damals auch Textaufgaben, vielleicht wurde es später geändert. Und ja, wir haben damals in NRW in der Grundschule auch Mengenlehre gemacht (mit den LÜK-Plastikplättchen), das war eine Zeit lang eine Mode. Deshalb glaube ich auch, dass ich das in der 5. Klasse in den 1980ern vermutlich hingekriegt hätte.
@@halvarf Das glaube ich. Ich bin der Meinung, dass die westdeutschen 68er in den und über die Hochschulen ab den 80er Jahren das westdeutsche Bildungssystem schrittweise heruntergewirtschaftet haben. Von der guten Didaktik und der industrienahen polytechnischen Ausbildung in der DDR wollten die westdeutschen Entscheider nach der Deutschen Einheit nichts wissen.
Auch ich hatte im Tontechnikstudium in Düsseldorf - vor 44 Jahre - das Mathebuch 'Analysis für Ingenieure' vom 'VEB Fachbuchverlag Leipzig', preisgünstig und gut.
Schlueße mich an. Ich hatte zusätzlich zum Biobuch der Schule eines aus der DDR. Wenn man die Propaganda ignoriert hat, war es so viel besser. Galt entsprechend leider nur für Naturwissenschaften, aber da war klasse Literatur dabei.
Ich bin Ü60 und habe von dieser Art zu rechnen noch nie was gehört. Mein Bruder zeigte mir dieses Video und ich habe es im Kopf gelöst. Mein Bruder war verblüfft. (100-10)=90 (90-85)=5 (90-73)=17 90-(5+17)= 68
Zusätzlicher Lösungsweg: Da die Frage lautet, welche Personen _beide_ Sprachen sprechen, kann man von den Deutschsprechenden 75 auch gleich die _nicht_ Russischsprechenden 7 (90 - 83) abziehen und erhält ebenfalls 68 (75 - 7). Das geht selbstverständlich auch umgekehrt: von 83 Russischsprechenden die nicht Deutschsprechenden 15 (90 - 75) abziehen, ergibt logischerweise ebenfalls 68 (83 - 15).
Einfach super. Die Art der Lösung ist genial. Es gab eine Zeit,ich konnte vieles im Kopf rechnen. Da es nicht gebraucht wird ,fehlt die Übung,daher hat mir das spass gemacht es war sehr interessant So etwas müsste öfter im RUclips kommen Gute Zeit
Auch, aber ich habe mir gedacht, die 10 spielen keine Rolle. Also 90 betrachten, wie kommt das hin? die 75 gedacht in die 83 packen, und solange einen rausnehmen, bis man auf 90 kommt von 83 ausgehend, also nach 7 Schritten. Diese 7 dann von 75 abziehen = 68.
Das ist doch ganz einfach.. Von 100 sprechen 10 weder russisch noch deutsch. Bleiben 90, von denen 83 russisch sprechen.. Also 7 nur deutsch.. 75 sprechen deutsch, also 15 nur russisch.. 15+7=22, die nur jeweils eine Sprache sprechen.. 90-22=68,die beide Sprachen beherrschen..
Naja, ich hatte die simplere Lösung, die hier gibt auch noch eine neue Unterteilung, Einsprachler und Mehrsprachler. Welch ein Luxus. Jetzt bringen wir auch noch Engländer mit ins Spiel, dann wird's aber richtig kompliziert!
Also wir haben das damals so gelernt: Wir haben 100 Personen. Zuerst nehmen wir die 10 Leute weg, die weder Deutsch noch Russisch sprechen. Jetzt haben wir noch 90 Personen übrig. Von diesen 90 Leuten sprechen 83 Russisch, also bleiben 7 übrig, die kein Russisch können. Dann schauen wir uns nochmal die 90 Leute an, und wenn wir die 75 wegnehmen, die Deutsch sprechen, bleiben 15 übrig, die kein Deutsch können. Jetzt addieren wir die 7, die kein Russisch sprechen, und die 15, die kein Deutsch sprechen. Das ergibt 22 Personen. Wenn wir diese 22 von den 90 abziehen, bleiben 68 übrig, die sowohl Deutsch als auch Russisch sprechen. Die vier viertel Tafel haben wir vor 50 Jahren nicht in der Schule gelernt!
Fast genau so. Außer, diesen zusätzlichen Schritt mit den 7+15 Einfach direkt die 7 von den 75 abziehen und gut ist. Die 7 die also kein Russisch sprechen, müssen demnach Deutsch können. Also kann man die 7 direkt von den 75 die insgesamt Deutsch können abziehen, weil diese ja nun nicht mehr in Betracht kommen für D+R.
gut erklärt, die tafel ist einfach nur doof und verwirrend! aber es geht noch einfacher als ihre Rechnung. man addiert einfach die einer 5 plus 3 und die zehner 7 plus 8 zusammen = 15 5 plus 3 sind 8 7 plus 8 sind 15 , jetzt zählt man 1 plus 5 zusammen das sind 6
Peinlich ich auch nicht…bin Geburtsjahr 1965 und war in Mathe zwar kein „Genie“ aber eine 2 war meistens drin… Aber das kommt davon wenn man sich nur noch auf Taschenrechner, Computer etc verlässt und das „ logische denken“ verlernt…
Brauchen wir alles nicht mehr keine Sorge Dank Handy und KI kannst du jede Textaufgabe einsprechen und lösen lassen .. Mann muss nix mehr heutzutage wissen .. Mann muss nur wissen wo man Fragen muss um die Lösung zu bekommen ...
Mit dieser Methode, kann man die Aufgabe lösen, ohne logisch verstanden zu haben, wieso. Der Ansatz es über logisches Schlussfolgern zu lösen, ist daher vorzuziehen, denn logisches Denken, bzw. analysieren und schlussfolgern ist in dieser Gesellschaft ohnehin extrem unterentwickelt, wie man täglich feststellen muss.
Den gleichen Gedanken hatte ich auch. Das Ziel der Textaufgaben ist Logik. Ich spulte den Inhalt ab und löste schlüssig. Diese hier gezeigte Methode ist Technik. Wenn das Eingepaukte nicht angewendet wird, verliert es sich. Die Aufgabe kann dann später wahrscheinlich nur, wenn überhaupt, mit großer Anstrengung gelöst werden.
Als bayrischer Gymnasiallehrer kann er leider nicht sagen, worin der Vorteil im aktuellen Lehrplan, für Schüler bzw. deutscher Gesellschaft besteht, dass dieses logisches Denken erst ab der 9. Klasse gelehrt wird. Vermutlich wird es bis dahin nicht in den naturwissenschaftlichen Fächern, im „Gesamtbild des Lehrplans“ benötigt. Sorry, ist für mich nur ein Beleg, dass das logische Denken heute vier Schuljahre später gelehrt und gelernt wird. Wozu sollte das gut sein? Die Studien zeigen eindeutig, dass es nicht gut ist!
Erleuchte uns Unwissende doch? Ich finde solche Knobelaufgaben, so nenne ich sie mal, sind ja ganz nett. Aber damit kannst du beim Handwerkern nicht viel anfangen. Bringt dir auch sonst nichts fürs Abitur beispielsweise. Es will nicht jeder Mathestudent werden ;)
@ Genau das ist ja das, was Thomas Neumeier ausdrücken wollte. Ich habe die Aufgabe im Kopf gelöst ganz ohne Formeln. Die Schüler lernen im Mathematikunterricht nicht logisch zu denken, sondern sie lernen, wie sie nach einem Schema X eine Formel anwenden. Man kann kann am Gymnasium in Mathe eine 1. haben und dennoch an solchen Aufgaben scheitern, wenn die Vorgabe wäre, diese nur mit Logik zu lösen und Logik hilft immer weiter im Leben, auch im Handwerk. Auf diese Weise tragen Uni und Schule zur Verblödung bei. Man sollte in ca 2 Minuten wissen, dass die Lösung bei dieser Aufgane 68 ist und das nur mit Logik.
Bin 53, aber habe dies weder in der (West)schule gelernt, noch sonst in meinem Leben bisher gesehen. Mal wieder was gelernt. Wäre interessant gewesen, noch ein bisschen Hintergrundwissen zu dieser Technik zu bekommen. Also, "warum" das so funktioniert.
In so einer Vierfeldertafel steht in den inneren Feldern, wie oft die vier möglichen Kombinationen der beiden Merkmale (hier also "spricht D und R", "nur D", "nur R", "weder noch") vorkommen. Die Summe der beiden Zahlen einer Spalte/Zeile ist die Häufigkeit eines einzelnen Merkmals (also zB. "spricht D" oder "spricht kein R"), sie wird darunter bzw. daneben am Rand notiert; ganz rechts unten im Eck steht die Gesamtzahl - das ist wieder die Summe der beiden Zahlen daneben/darüber (die Summe muss in beiden Fällen gleich sein: wir haben die Gesamtzahl bloß auf zwei unterschiedliche Weisen zusammengezählt!) Der Trick bei diesen Aufgaben ist immer, dass ein paar Zahlen der Tabelle vorgegeben sind, aus denen man die restlichen berechnen kann, weil ja in jeder Zeile/Spalte die Zahl am Rand die Summe der beiden anderen Zahlen ist.
Bin in (Ost) Schule gegangen und kann mich daran 1976 auch nicht erinnern!😉😀 War wohl gerade Milch holen, wie man bei uns dann entschuldigend sagt. ( Zwei Schüler wurden in der 2 Stunde kurz vor der Frühstückspause immer zum Hausmeister geschickt, um den Milchkasten zu holen. 😅)
@@srh2301 bin im Osten zur Schule, es kam dann zwar die Wende noch bevor ich in die Oberstufe ging, aber da war auch keine Mengenlehre zu sehen. Die habe ich erst in einem Studium gelernt und finde das man es sehr schnell verstehen kann, wenn man sich die Grundlagen genau anschaut. Dazu empfehle ich RUclips Videos mit Grundlagen Mengenlehre und die Anwendung des "Venn-Diagramm". Es wird einem heutzutage sehr leicht gemacht das zu erlernen. Viel Erfolg 👍🏻
Ich bin in Westdeutschland zur Schule gegangen. So etwas habe ich in Mathematik nie gesehen. In der Grundschule haben wir in Mathe nur eine Art Mengenlehre gehabt (damals der letzte Schrei aus den USA, die es aber dort schon ein Jahr später wieder abgeschafft haben): grüne, gelbe, ... Kreise, Vierecke, ... hin und her schieben. Eher eine Beschäftigungstherapie, als wie Bildung. Nur ein Lehrer hat uns ein Schuljahr lang Rechnen beigebracht. Die weiterführende Schule war teilweise besser. Es kam ganz auf den Lehrer an. War er eine tiefgekühlte Schlaftablette, war auch das Lernerlebnis entsprechend. Monate lang die Mitternachtsformel, ohne zu wissen, wofür sie nützlich ist, und andere Zeitvergeudung. Erst auf dem zweiten Bildungsweg und später, habe ich es erfahren, dass Mathe und Rechnen keine Folter, sondern etwas wichtiges und vor allem interessantes ist.
Bin 1966 Eingeschult, Weihnachten war das Alphabet drin. Meine Kinder im Bundesrepublik Schulsystem brauchten ein Jahr, weil das so vorgesehen war. Leistung muss früh gelernt und erbrach werden
Für mich war es eine reine Denkaufgabe ohne viel rechnen zu müssen, es ist schon wahr, das viele Schüler das Denken verlernt haben und lieber im Internet nach der Antworten suchen.
100-10=90, "weder D noch R" aus Rechnung eliminiert. 75+83=158>90, Schnittmenge "D und R" existiert. 158-90=68 Anzahl der Elemente in Schnittmenge "D und R".
Tatsächlich wieder mal eines von gar nicht sooo wenigen Beispielen, in denen mir im Leben klar wurde, dass Mengenlehre doch nicht komplett nutzlos ist. Gar nicht.
@@Yeeeiii... mengenlehre kommt in der 5. klasse dran. passt also, ich würde es auch mit den mengen und schnittmengen lösen. es ist im grunde fast das gleiche, nur etwas anders notiert...
Man kann ja schon froh sein, dass man einen Lehrer findet wie sie, der überhaupt druckreif, zielgerichtet und allgemein verständlich artikulieren kann. Weiter so!
90 Leute sprechen Russisch und/oder Deutsch. Wenn 83 Leute davon Russisch sprechen, dann sprechen 7 Leute nur Deutsch. Wenn es aber 75 Deutsch sprechende gibt, dann muss es 75-7 = 68 Zweisprachler geben.
Da bin ich ja froh, dass ich mir im Kopf die richtige Lösung erarbeitet habe. Das Vierfelder-Schema kannte ich aus der Mathematik überhaupt nicht. Erinnert mich irgendwie an Logiktrainer. Finde ich gut, wieder was gelernt. Nur tue ich mich bei Sachaufgaben etwas schwer, wenn die Aufgabenstellung mit unrealistischen Zahlen hantiert. Hat aber trotzdem gepasst.
Super Sympathischer Typ und Hammer Kanal, ich hab die Methode mit der Vierfeldertafel noch nie gesehen aber sehr interessant zu lernen. Auch den kleine Monolog am Anfang fand ich super interessant, wir wären alle deutlich weiter wenn wir auf die Meinungen von qualifizierte Menschen wie Lehrern bei der Gestaltung unserer Bildungspolitik hören würden. Was Kinder aus anderen Ländern leisten ist insane im vergleich, hier müssen wir einfach nachbessern wenn wir vorne bleiben wollen. Hab auf jeden Fall mal ein Abo dagelassen💪🏼
Super Beitrag! Ich kannte das Vier Felder Modell auch nicht aus der Schule (1974-1984), aber es erinnerte mich sofort an die Logikrätsel der Zeitschrift PM. Danke für den Input und machen sie weiter so! Unsere Kinder brauchen Lehrer wie sie, die auch über den Tellerrand hinaus schauen und das Bild als Ganzes betrachten! Grüße aus Magdeburg 🖖
Hab's im Kopf gemacht. 2 mal im Kopf geprüft und Bingo. Das Verfahren kannte ich nicht, obwohl meine eigene Mutter Mathelehrerin war. Ich habe in der DDR erst ein Abi gemacht, dann in einem Jahr Abendschule einen Facharbeiter (3 Jahre NVA danach) und nun ein Hochschulstudium mit Dipl.-Ing. Das DDR-Schul- bzw. Berufsasubildungssystem war so gut, daß Skandinavische Staaten (vor allem Schweden) mit der DDR kooperiert haben, aber u.a. auch Singapur sich viel abgeschaut hat. Ich war genau mit der Wende 1991 fertig und meine Ausbildung erlaubte es mir, nun im Kapitalis,us locker mitzuhalten. Aber das DDR-Schulsystem hatte 2 große Nachteile: 1. Sport war zwar sogar bis in die Hochschule verpflichtend, aber stark an den militärischen Bedürfnissen der NVA bei den Prüfungen ausgerichtet (Klimmzüge, Gewichtstoßen, 3000m-Lauf und F1-Weitwurf; also Handgranate). Gerettet haben mich immer die guten Sportlehrer, die durften bei außerschulischen Sportleistungen die Noten nach oben korrigieren, so daß schwere und nicht so schnelle Jungs wie ich trotzdem nicht hängen blieben. Und das haben auch viele Sportlehrer so gemacht, sie wollten zum Schluß nur sehen, daß man Sport ernst nahm und sich Mühe gab. 2. Eine Katastrophe war der Fremdsprachenunterricht. Ob russisch, englisch oder französisch - unsere Lehrer waren nie in den jeweiligen Ländern unterwegs und das ganze war viel zu theoretisch / grammatiklastig aufgezogen. Schwerpunkt war zum Schluß (im Studium) nur noch das Übersetzen von fremdsprachigen Fachtexten ins deutsche. Wer in der Prüfung mit dem Wörterbuch also schnell genug war, der kam durch. Selbst unsere Russischlehrerin war nie in der UdSSR.... Später hatte ich das große Glück in Hanau in einer großen Maschinenbaufirma arbeiten zu dürfen und die schickten mich schon bald nach SO-Asien. Ich blieb fast 10 Jahre und drückte mir dort ordentlich mein englisch drauf. Nach ca. 2 Jahren war ich fließend, heute höre ich die Akzente nach den entsprechenden Ländern raus und kann den einen oder anderen nachahmen (Fr. Baerbock, bitte nehmen Sie unbedingt ab sofort immer einen Dolmetscher mit, es ist sonst richtig peinlich!). Fast alle Kollegen in Hanau kamen aus den Alt-Bundesländern. Allerdings hatten die meisten damals auch durchaus noch eine richtig gute Schulbildung, Berufs- bzw. Hochschulausbildung durchlaufen. Das Niveau auf beiden Seiten fing ab den 1990ger Jahren massiv zu sinken an und dieser schleichende Bildungsverfall setzt sich "nachhaltig" und konstant fort. Besonders schlimm fand ich das Bildungsniveau meiner US-amerikanischen Kollegen (Lieferanten, Kunden etc.) auch gegenüber den Kollegen aus Asien (alle möglichen Länder) und Australien. In Asien (und anderen 3. Welt-Staaten) wächst eine riesige hervorragend ausgebildete junge Mittelschicht ran, die auch noch sehr leistungsfähig und -willig ist. Europa, du bist unter Druck, wie du es nicht ahnst....!!! Vielleicht sollten wir langsam mal aufhören, schon fast religiös-esoterisch die "Natur" anzubeten und stattdessen uns wieder um Naturwissenschaften zu kümmern, sowie unsere Kinder ständig wie Weicheier zu behandeln. Sich bequem und konsequenzenfrei auf die Straße zu kleben, um "den anderen" zu sagen, was "die" zu machen haben, bewegt keine Energiewende. Dafür muß man schon selber u.a. den schwierigen Beruf eines Elektrikers lernen. Hey, Ihr "woken", ran an die Aderendhülsen und Schaltpläne 🙂. Zeigt's uns Boomern gerne, daß Ihr das auch könnt! Peace! aus Dresden
Schön zusammengefasst. Viele der "Nachfolger" werden die Rente der Ü60 Generation nicht bezahlen wie es jetzt aussieht. Gut dass ich mich darauf nie verlassen habe....
Mal ganz ehrlich, ich komm aus der DDR und diese Rechentechnik habe ich nie beigebracht bekommen. Solche Aufgaben mussten mit dem eigenen Verständnis gelöst werden. Wenn ich sehe was meine Kinder heute in der Schule für Aufgaben bekommen, wie ihnen versucht wird schreiben bei zu bringen verstehe ich warum das Niveau sinkt. Es ist so viel Müll der weder Sinn noch Verstand hat in den Schulbüchern meiner Kinder.
Zählt man die 10 + 75 + 83 zusammen, kommt man auf 168 Personen. Das sind 68 zu viele. Wie kamen die 68 zu vielen zustande? Die Personen, die sowohl Deutsch als auch Russisch sprechen, wurden doppelt mit eingerechnet. Zieht man also die Anzahl der tatsächlichen Personen von der Summe wieder ab, erhält man die Zahl der Personen, die beide Sprachen beherrschen. 10 + 75 + 83 - 100 = 68
Danke, Ihre Berechnung ist die beste und folgt der tatsaechlichen inneren Logik, da die 68 ja doppelt eingerechnet wurden. Das ist der springende Punkt.
Gut. Fast genau so habe ich es auch gemacht. Nur dass ich die Personen, die keine der beiden Sprachen sprechen nicht betrachtet habe, also 75+83-90=68. Ich also die 10 schon vorher abgezogen habe. Aber im Grunde das gleiche. Die Erklärung im Video ist für 5 Klässler viel zu kompliziert.
Das ist aber nicht Sinn dieser Übung. Auch in der 5. Klasse geht es darum das Grundkonzept zu verstehen und dafür sind solche Aufgaben da. Und dann kann man es auch auf deutlich komplexere Aufgaben anwenden.
Unsere Lehrbücher waren in allen Fächern um Längen besser. Ich bin zu beiden Zeiten in der Schule gewesen. Unsere Bücher waren klar formuliert, ohne Schnickschnack, und verständlich.
Da kann ich dir nur recht geben ,kein Wunder wenn die Kinder schlecht lesen und schreiben können , das Lesebuch ist keinLesebuch mehr ,steht nur Blödsinn drin .Habe meinem Enkel , jetzt 3 .Klasse das Lesebuch von meiner Tochter aus DDR Zeitenzum lesen gegeben..
@@birgitdannenberg3329schonmal Texte von einem Kind gelesen, welches nach der „schreibe wie du es sprichst“ Methode gelernt haben? Es ist so furchtbar…
@dudzi2121 Stimmt , finde ich auch furchtbar . In Hessen wurde in Druchbuchstaben geschrieben , jetzt wieder Schreibschrift , war auch unmöglich ,manche Kinder haben da auch wieder Schwierigkeiten sich umzustellen .
Das mit den vier Feldern habe ich noch nie gehört. Trotzdem hatte ich ziemlich schnell die Lösung, obwohl mein erster Gedanke war „Wie soll das denn gehen?“… 100 minus 10, die weder R noch D sprechen. Von den restlichen 90 sprechen 7 nur D und 15 nur R. Die ziehe ich von 90 ab und hab 68. Ich kann mich nicht erinnern, dass wir in meiner Schulzeit in den 80ern (bis Anfang 90er) solche Beispiele gerechnet hätten. Vermutlich wäre ich als Schüler auch ausgestiegen dabei, muss ich ehrlich sagen. Mir kommt ohnehin vor, dass ich in Mathe mehr verstehe, je älter ich werde. Und es macht mir inzwischen sogar Spaß! Prozentrechnung in allen Varianten und Geometrie mochte ich aber schon in der Schule. Die habe ich verstanden. Der Rest war auswendiglernen…
Es freut mich zu sehen, dass die Situation (jetzt mal außerhalb der Aufgabe) so differenziert betrachtet wird. Einfach zu schimpfen, früher wäre ja alles besser gewesen oder alles aufs Bildungssystem zu schieben (obwohl es da massiv Optimierungsbedarf gibt) ist halt nicht der richtige Weg. Nicht die Rahmenbedingungen, sondern die Menschen, also die Lehrer, Erzieher, Eltern etc. fördern das Können der jeweiligen Schüler...
Die Rahmenbedingungen spielen in dem Fall eine erhebliche Rolle, nach meiner bescheidenen Meinung die Kombi aus fehlgeleiteter Fachdidaktik (die sich auch in schlechteren Lehrbüchern niederschlägt), Kürzung der Unterrichtsstunden und des Niveaus, Still- und Gruppenarbeit statt Frontalunterricht und Hausaufgaben sowie Druck von oben, möglichst viele Absolventen zu haben, wenig schlechte Noten zu vergeben und die ganze Bürokratie, die es früher gar nicht gab. Er hat natürlich Recht, wenn er sagt, dass ein Lehrer sich im Rahmen seiner Möglichkeiten auch widersetzen kann.
sehr schön. Habe (Abi in 1966) von Vierfeldertafeln erst als Nachhilfelehrer gehört, aber die sind mir hier nicht eingefallen, vielmehr habe ich das für mich „konventionell“ gelöst. „Konventionell“ kam mir dabei zu wenig systematisch vor und ich habe darüber etwas nachsinniert: so wie es bei einer guten Aufgabe sein soll!
Man kann es auch mit Mengenlehre und Logik im Kopf lösen. Die Kreuztabelle ist natürlich als visuelle Struktur sehr hilfreich und ausserdem in empirischen Studien weit verbreitet. Didaktisch würde ich neben "Vierfeldertafel" auch die Synonyme "Kontingenztabelle" und "Kreuztabelle" (EN: Cross Table) erwähnen. Das ist hilfreich, wenn man z.B. zwecks Studium in eine andere Mathematik-Kultur wechselt.
"Kreuztabelle" ist deutlich prägnanter als der alberne und zudem unkorrekte Begriff "Vierfeldertafel" (den ich auch nie gelernt habe, wir hätten das damals mit einfacher Mengenlehre gemacht, teilweise bereits in der Grundschule!)
Ich habe mal eine Frage. Diese Formel an sich war mor neu. Ich hatte die Lösung eher im Kopf anders gerechnet aber kam auf die selbe Lösung. War das denn aber eher Zufall? Mein Weg war: 100 - 10 die es nicht können sind 90. 83 bis zur 90 sind 7 75 - 7 = 68 War das Zufall oder war das halt einfach die Formel nur im Kopf.
Ich habe 1990 mein Abitur gemacht und hatte Mathe LK. Ehrlich gesagt, hatte ich bis jetzt noch nie von dieser Rechentechnik gehört. Ich hätte es auch über die Mengen gelöst.
Die Methodik wird vor allem in der Statistik (Ereignisse) verwendet und die kommt erst weit später dran. Man kann es aber einfach im Kopf ausrechnen. Das Schaubild dient nur der Veranschaulichung. Außerdem hilft es schwächeren Schülern überhaupt zum Ergebnis zu kommen, indem das Problem systematisiert wird...
Genau so geht es mir auch. Damals gab es in der ZEIT immer die "Logelei von Zweistein" (von Gero von Randow, glaube ich), und da gab es Rätsel, die ähnlich waren. Die Herausforderung liegt ja eigentlich darin, das logisch zu durchdringen, nicht einen gelernten Algo durchzugehen, der nur für einen ganz bestimmten Typ Aufgaben funktioniert. Das wurde ja auch im Video gesagt: Es ist ein großer Unterschied, ob genau solche Aufgaben und dieser Lösungsansatz vorher mit der Klasse geübt wurden oder nicht.
@@halvarf Wobei die Tafel praktisch ist, etwa wenn in den Mix noch eingeworfen wäre, dass unter den 100 Passagieren noch welche sind, die Polnisch, Englisch und Chinesisch sprechen und nicht nur diejenigen bestimmt werden sollen, die nur DE und RU sprechen, sondern alle fünf Sprachen. Dazu müsste man anhand der gegebenen Daten mehrere Gleichungssysteme aufstellen, oder diese Daten kompakter in so eine Mehrfeldertabelle eintragen - es läuft im Ergebnis aufs gleiche hinaus, aber evtl. ist die Darstellung kompakter und bei einer voll ausgefüllten Tabelle kann man sofort jede beliebige Kombination sehen. BTW. Ich kam mit der Vierfelder-Tabelle (ohne dass sie so genannt wurde) das erste Mal bewusst in Biologie in Berührung, als es um die Mendel'sche Erblehre mit dominant-rezessiven Merkmalen ging (8. Klasse).
@@florianmeier3186 Ehrlich gesagt habe ich solche Kreuztabellen zum ersten Mal im PM Logik Trainer gesehen. Vorher bin ich ohne ausgekommen, mit einfacher Mengenlehre! So Schnittmengen und Vereinigungsmengen. Hat dann auch gut bei der Stochastik im 12. JG geholfen...
Das könnte tatsächlich mein Mathebuch gewesen sein, ich war 1983 in der 3. Klasse, so oft wurden die nicht gewechselt. Solche Aufgaben fand ich immer trivial, auch die hier. 90 sprechen mindestens eine der Sprachen, davon 15 kein Deutsch und 7 kein Russisch. Bleiben also 68 Zweisprachige.
@@WolfgangPedain Habe auf kariertem Rechenpapier ein Quadrat gezeichnet von 10 x 10 Kästchen. Die untersten 10 Kästchen habe ich mit einem Strich abgeteilt für die 10 Personen, die weder deutsch noch russisch sprechen, bleiben oben 90 Kästchen. In die muss man 75 mal den Buchstaben D schreiben und 83 mal den Buchstaben R. In allen Kästchen muss mindestens ein Buchstabe stehen. Wenn man das so macht, dass in mehr als 68 Kästchen beide Buchstaben stehen, bleiben Kästchen leer, und leere Kästchen bedeuten weder deutsch noch russisch. In der Kategorie leere Kästchen haben wir ja unten schon 10, mehr als 10 dürfen es aber nicht sein. Also kann es nicht mehr als 68 in der Schnittmenge D UND R geben. Hoffe, ich habe mich nicht geirrt. Gruß!
Ich danke Dir, dass Du das nochmal eingeordnet hast. Es liegt mir immer fern über die deutschen Schüler herzuziehen, dass sie angeblich zu dumm seien. In den Kommentaren sieht man ja super viele Leute, die den Begriff Vierfeldertafel noch nie gehört haben, aber dennoch die Aufgabe lösen konnten. Ich glaube, das zeigt, wie kreativ die meisten Leute sind, was Lösungssuche angeht, was auch wiederum auf Schüler zutrifft
Ich denke, den meisten Leuten meiner Generation ist damals die Mengenlehre heftig eingebläut worden, das war damals der total coole neue Scheiß (naja, eigentlich deutlich älter, aber eben als Lehrmethode!) Bei mir hat's funktioniert, und bei vielen anderen wohl auch...
Ja, mit einem gewissen mathematischen Grundverständnis und einer Prise Kreativität lassen sich die meisten schulmathematischen Fragestellungen problemlos lösen, ohne dass man dafür Konzepte / feste Lösungsschemata wie Vierfeldertafel oder Dreisatz bräuchte. An der Uni lehrt man diese Lösungsschemata übrigens auch nicht - und siehe da, der gesamte Schulstoff von Klasse 1-13 lässt sich plötzlich mühelos auf das erste Semester zusammenstauchen. In gleichzeitig viel größerer Tiefe als in der Schule. In der Schulmathematik versucht man im Grunde, eine Abkürzung zu gehen. Man legt gar nicht so viel Wert darauf, dieses Grundverständnis aufzubauen. Stattdessen lernt man haufenweise vorgefertigte Aufgabenformate mit den dazugehörigen Lösungswegen auswendig. Und dann heißt es bei einer Aufgabe, für die man nur im Zahlenraum bis 100 addieren und subtrahieren können muss: "Das können wir noch nicht, das kommt in unserem Bundesland erst in Klasse 9." Keine sonderlich schnelle Abkürzung, die die Schule da geht, könnte man meinen :D
Egal ob Ost oder West 🇩🇪, wir haben noch vernünftige Lernziele gehabt ( Grundrechenarten, Sprache, Rechtschreibung usw.) für " kein Bock aufs Lernen " die Erfolgskontrolle fiel dementsprechend aus 🤷♂️. Ich bin 1961 er Baujahr und im Westen aufgewachsen. Klasse erklärt. 👍
Lieber Herr Mathelehrer, sie sprechen mir aus der Seele. Leider hatte ich als Mutter sehr schmerzhafte Erfahrungen, was Matheunterricht angeht. Ich kann nur für das Land Niedersachsen sprechen, aber aus meiner Sicht die Ursache Nr. 1 ist der Unterrichtsausfall. Selbst bin ich nicht in Deutschland geboren, aber diese Aufgabe habe ich innerhalb von zwei Minuten selbst gelöst. An die Matrix habe ich zuerst auch gedacht, allerdings diese Aufgabe habe ich anderweitig gelöst, mit dem gleichen Ergebnis, obwohl meine Schulnoten in Mathe im Bereich "ausreichend" waren.
Als Grundschülerin der 1960er Jahre in Westdeutschland hatte ich zuerst Mengenlehre. Und die so verinnerlicht, dass ein Mengendiagramm zu einer so einfachen Aufgabe wie hier gleich vor meinem geistigen Auge erscheint und ich es so im Kopf lösen kann.
Ich sehe das genauso (Ossi, Unterstufe von 1966 - 1972) und meine Mutter (Grundschule von 1931 - 1937, jetzt 99)) ebenfalls und mit meiner Oma (Grundschule von 1905 - 1911) konnte ich in der Unterstufe Mathearbeiten berichtigen. Also muß es wohl ein ganzes Stück am derzeitigen "Schul - System" liegen. Da beißt die Maus keinen Faden ab.
Bin 71 und habe 1973 in NRW das alte Abitur gemacht. Bin heute noch fit im Lehrstoff bis ca. 11.Klasse (Drillfaktor!). Ich muss aber gestehen, dass ich von der Vierfeldertafel noch nie was gehört habe. Schüler aus NRW hatten 1965-66 zwei Kurzschuljahre, d.h. zwei Schuljahre in einem Kalenderjahr. Dazu wurde Lehrstoff gekürzt, gesichert bei uns Mengenlehre und Bruchtermen. Eventuell auch die Vierfeldertafel??
Wenn der Titel zum Klickbaiting wird der den Zeitgeist bedient. Finde ich schade da die Aufgabe an sich interessant ist. Bin vor Dekaden in die Schule gegangen und habe den Begriff 'Vierfeldtafel' nie gehört. Gelöst habe ich die Aufgabe allerdings genauso. Und PISA oder IGLU messen nicht die Leistung von 'deutschen Schülern' sondern von 'Schülern in Deutschland'. Daraus könnte man jetzt wieder eine Rechenaufgabe analog der hier vorgestellten machen.
Die Statistiken zu Pisa zeigen, dass die soziale Komponente ausschlaggebender ist als die Migration, leider ist beides oft miteinander verwoben. Da könnte man jetzt aber auch fragen, wie das mit der Integration funktionieren soll wenn einige Überdeutsche schon anhand der Herkunft sofort zu wissen meinen wer was taugt und wer nicht und das auch deutlich zeigen, aber wenn man Chancengleichheit fordert ist man ja in gewissen Kreisen gleich linksradikal.
Sehr schön, wieder was gelernt, vielen Dank. Ich habe diese Technik vor 25 Jahren nicht gelernt, war wohl im Lehrplan nicht vorgesehen, genauso wie 3 Satz oder Strahlensatz.
5. Klasse? Im Saarland habe ich im 1. Schuljahr 1975/76 Mengenlehre gehabt. Diese Rechnung konnte ich mit Hilfe dieser Mengenlehre lösen: Menge aller Personen 100, Menge der weder D noch R sprechenden 10, Menge der D sprechenden 75 und Menge der R sprechenden 83 -> ergibt die Schnittmenge 68 können D und R!
@@edhoc2 Du meinst, diese alberne "Vierfeldertafel" macht genau das, was die Mengenlehre uns lehrt! Auch wir hätten sowas damals einfach mit Schnittmengen und Vereinigungsmengen gelöst, und wenn nicht im Kopf, so kann man diese Zahlen auch ins einfache Venn-Diagramm (das wir gar nicht so genannt hatten) reinmalen. Fertig!
@@holgerlay6977 Ja, die Mengenlehre war damals ein Diskusionsthema. Ich erinnere mich noch sehr gut an all die aufgebrachten Eltern und Leher, und Komiker a'la Otto und Emil, die sich drüber lustig machten. Aber genau so schnell, wie die Mengenlehre auftrat, war sie auch wieder verschwunden. Trotzdem konte ich diese Aufgabe problemlos damit lösen. Die vier-Felder-Methode ist mir aber fremd. Ich finde sie auch interessant als Lösung solcher Rechnungen.
Da ich nach der 10 mit einer 4 in Mathe abgegangen bin, freue ich mich als 48 -Jähriger immer noch nach etwas Überlegung die Aufgabe ohne Blatt Papier lösen zu können.
Es lohnt sich die Kommentare zu lesen: Viele Wege führen nach Rom! Unsere Schüler - eigentlich alle Menschen - brauchen Raum und Zeit sowie herausfordernde Aufgaben um selber Lösungswege und Modelle für mathematische Probleme zu finden. Vielen Dank nochmal für diese Aufgabe und alle Kommentare.
Auch ich muß zu meiner Schande gestehen, diese Vier-Felder-Technik nicht gekannt zu haben. Haben mir das Video dann in Ruhe nochmal angeschaut. Vielen Dank dafür! Und ebenfalls war auch ich zuallererst (wie auch ein Herr weiter unten) auf eine viel zu große Personenzahl gekommen.
Lösungsweg von ChatGPT 4o Die Aufgabe beschreibt eine klassische Mengenschnittmenge. Wir haben zwei Mengen: 75 Personen sprechen Deutsch (D). 83 Personen sprechen Russisch (R). 10 Personen sprechen weder Deutsch noch Russisch, also 90 Personen sprechen mindestens eine dieser beiden Sprachen. Um die Schnittmenge zu berechnen, gehen wir folgendermaßen vor: 1. Es gibt 90 Personen, die Deutsch oder Russisch sprechen (100 - 10 = 90). 2. Von diesen 90 Personen sprechen 75 Deutsch und 83 Russisch. 3. Die Formel zur Berechnung der Schnittmenge lautet: |D \cap R| = |D| + |R| - |D \cup R| Wobei , also: |D \cap R| = 75 + 83 - 90 = 68 Das bedeutet, 68 Personen sprechen sowohl Deutsch als auch Russisch.
Jahrgang '69, DDR Bildung, Mathe-Abi 1 und ich konnte es leider nicht mehr lösen... Die Vierfeldertechnik habe ich noch nie zuvor gesehen. Genial. Danke! Werde es meinem 6.Klässler-Kind zeigen.
Mathe Abi 1 und das nicht lösen können???? Auswendig gelernt wie so manche 1.0er??? oder denkst du vielleicht einfach zu kompliziert , da zu hoher IQ? ;) ich bin Ossi 1978, Abi 1998...kein Mathe. das ist simple kausale Logik... Es steht alles im Text, genau lesen. da ist nicht viel mit rechnen. ich habe dazu 10 Sekunden im Bett gebraucht. Man kann es auch mit Mengenlehre rechnen...oder eben Feldertechnik. Die aber halt nur was bringt, wenn es viel mehr Zahlenangaben sind
Interessant, wie viele Wege zur Lösung führen. Mein Weg war folgender: 90 Personen sprechen Russisch oder Deutsch oder beides, davon können 83 Russisch - 75 Deutsch Nun folgende Hypothese: Wenn von allen 83 Personen die Russisch sprechen, ALLE auch deutsch können, dann muss es 90 - 83 = 7 "Deutschsprecher" geben, die kein Russisch können. Somit kann es nur 75 - 7 = 68 Deutschsprecher geben, die auch Russisch sprechen. Geht umgekehrt genauso: Hypothese II: Alle Deutschsprachler können Russisch - also müssen 15 "Russen" kein Deutsch können: 90 - 75 =15 Diese 15 zieht man also dann von den 83 Russischsprachlern ab: 83 - 15 = 68
Ich bin Jahrgang 1970 und aus Sachsen, ich habe genau diese Aufgabe auch machen müssen in der Schule. Ja und es sind genau 68 Personen die Deutsch und Russisch können, meine Tochter habe ich dazu gleich mal gefragt, ( 8. Klasse) hat mich blöd angeschaut und gefragt was diese Frage soll, sie konnte damit nichts anfangen.
Ich kannte die Viefeldertechnik auch nicht und habe sie mit der gemeinsamen Schnittmenge auf einem Zahelnstrahl gelöst. Vielen Dank für die schöne Denkaufgabe und den neuen Lösungsansatz.
Ich merke doch, dass seit meinem an sich sehr guten Matheabitur Mitte der 90er einige Jahre ins Land gezogen sind. Beim Lesen der Aufgabe hatte ich tatsächlich erst mal gedacht, dass nicht ausreichend Informationen vorhanden wären - was aber natürlich bei einer Schulbuchaufgabe eigentlich nicht sein kann. Dieses Vierfelderding kam mir doch mal entfernt bekannt vor. Hab das irgendwo ganz, ganz tief in meinen Hirnwindungen abgespeichert. "Mehr Eigenverantwortung" bin ich grundsätzlich dabei; man sollte aber bedenken, dass Eltern, die beim Lernen helfen können, in sich bereits einen Luxus darstellen. Viele haben selbst nicht die entsprechende Bildung genossen (ich war als Schüler spätestens ab gymnasialer Klasse 7 in der Hinsicht komplett auf mich alleine gestellt), andere sind voll berufstätig usw. Da kommen Bereiche zusammen, in denen sich Bildungs-, Sozial und Familienpolitik mindestens überschneiden.
Ich löse die Aufgabe durch eine grafische Überlegung: Die Gesamtzahl der 100 Menschen interpretiere ich als einen Stab von 100cm Länge. Die Anzahl 10 derjenigen, die weder R noch D sprechen, interpretiere ich als Länge 10 cm. Die Anzahl R=83 derjenigen die (zumindest) R sprechen (von denen eine noch unbekannte Anzahl auch D spricht), interpretiere ich als 83 cm. Die Anzahl D=75 derjenigen, die (zumindest) D sprechen (von denen dieselbe noch unbekannte Anzahl auch R spricht), interpretiere ich als 75 cm. Nun gilt: Die Anzahl derjenigen, die mindestens eine Sprache sprechen, ist 100 - 10 = 90; in Längen uminterpretiert: 100cm - 10cm = 90 cm. Nun stelle ich mir R=83cm und D=75cm als ineinander geschobene Teleskopstäbe vor, die man beliebig auseinander ziehen kann. Da die Gesamtzahl derjenigen, die R oder D sprechen, gleich 90 ist, bedeutet das in der Uminterpretation in Teleskopstablängen: Man muss die ineinander geschobenen Teleskopstäbe R=83cm und D=75cm soweit auseinander ziehen, dass sie insgesamt eine Länge von 90cm abdecken. Man muss also den kürzeren Stab D=75cm um genau 7cm aus dem längeren Stab R=83cm herausziehen, damit insgesamt eine Länge von 90cm abgedeckt wird. Wenn man nun den Stab D=75cm um 7cm aus dem Stab R=83cm herauszieht, bleibt als Schnittmenge, also als Länge, auf der beide Stäbe ineinandergeschoben verbleiben, genau B=68cm. Also: 68 Menschen sprechen beide Sprache R+D.
Wow, ich habe die Aufgabe in zwei Minuten im Kopf gelöst. Vierfeldertafel hat mich verwirrt, aber Ergebnis hat gestimmt. Übrigens, eingeschult bin ich in 1959 im UdSSR gewesen.
Wir ehemaligen polytechnischen Oberschüler kennen diesen Aufgabentyp als „Textaufgabe“. Drüben die Brüder und Schwestern auf den Haupt- und Realschulen, den Gymnasien nannten ihn „Sachaufgabe“. Eine der vielen ost-westlichen Sprachunterschiede wie Auslegeware / Teppichboden oder Plaste / Plastik oder Sonnabend / Samstag.
Ich hab es so gemacht: 10 Leute sprechen beides nicht, bleiben 90. Von denen sprechen 90 minus 83 KEIN Russisch, also 7. Und 90 minus 75 sprechen KEIN Deutsch, also 15. Wir haben also von den 90 Personen dann 22, die nur eine der Sprachen können. Der Rest spricht folglich beide Sprachen, und das sond dann, 90-22, eben 68. Wirklich erstaunlich, wie viele Wege es gibt, das herauszufinden 😂
Kann mich als heute 77-Jähriger nicht daran erinnern, das Vierfelderschema beigebracht bekommen zu haben. Bevor ich jedoch die Kommentare gelesen habe, habe ich die Lösung über 75 (deutsch) + 83 (russisch) = 158 minus 90 ( weder noch) = 68 per Logik ermittelt.
Dito, so habe ich es auch gemacht :) Ich kann mich jetzt nach dem Video zwar wieder daran erinnern, dass ich diese Methode gelernt habe, aber sie war mir tatsächlich gänzlich in Vergessenheit geraten.
Sehr schön erklärt 🙂. Vierfeldertafel macht man in NRW aktuell in der 10. Klasse. Wenn man das Thema früher behandeln würde, dann würden die Schüler auch früher die Aufgaben lösen können. Das wäre ein Thema, was Schüler schon früher verstehen könnten. Die Älteren unter uns: Vierfeldertafel waren früher - bis in die 2000er Jahre rein, in NRW zumindest, kein Thema.
Mein Sohn ist und war ein sehr lebendiges Kind, er hat es geliebt zu lernen, er hat sich auf die Schule gefreut und es kaum abwarten können. Bis zum ersten Schultag. Es haben sich einige Dinge in der Schule und auf dem Schulhof ereignet, die sogar mich sehr erschreckt haben. Die ich nicht verzeihen kann. Er hat das Schreiben nach Hören gelernt. Also hat er drei Jahre lang alles falsch schreiben dürfen und es wurde nicht zensiert und dann wurde alles zensiert. Er Hat die vereinfachte Ausgangsschrift lernen müssen. Auf einem Elternabend habe ich gefragt ob das denn noch sein muss und ich bekam die Antwort von der Lehrerin, sie darf und wird das entscheiden. Er musste schreiben wie alle! Schrift und Form ist auch Kreativität und ein teil der Persönlichkeit. Eine eigene Handschrift ist so wichtig. Warum hat man den Kindern das angetan? Nun könnte ich meinem Entsetzen über die Schule weiter Ausdruck verleihen, das tue ich nicht. Ich glaube nicht mehr an Lehrer. Aber wir hatten Glück, mein Sohn hatte eine gute Auffassungsgabe, auch heute noch und brauchte und hat auch nie, gelernt. Er hat weder geübt, noch hat er sich je vorbereiten müssen und ist durch die Schule gegangen wie eine Eins. Studieren wollte er dann aber nicht mehr. Das fand ich sehr schade, konnte es aber verstehen. Denn ich wurde vom Lehrer noch geschlagen, weil ich keine sichere Händigkeit entwickelt hatte und mit beiden Händen schrieb. Er zwang mich mit der rechten Hand zu schreiben. Was zur Folge hatte, dass ich bis heute, rechts und links nur mit Nachdenken unterscheiden kann. Ich aber liebte Mathe ( mein Sohn auch, sein Großvater war ein Dozent für Mathematik an einer Uni ) und wenn es ein Lehrer geschafft hatte, meine Freude an Inhalten zu wecken, dann war ich auch mit Freude dabei und erinnere und beherrsche es auch heute noch, alles andere verschwand in den Analen der Vergangenheit und die Erinnerung ist zwar da aber nicht mit Freude belegt. Ich lehne unser Schulsystem mittlerweile ab und sage auch, wir Eltern wissen nichts.
Da hab ich anscheinend gefehlt. An 4 Fenster Technik kann ich mich nicht erinnern. Wohl aber an Windows, dass 10 Jahre später raus kam. Über gefühlte 15 Disketten, zum selber installieren. Meisst war dann eine Diskette nicht lesbar auf Sektor XY. Sehr spannende Geschichte. Wir haben noch mit dem Rechenschieber rechnen gelernt. Die Dinger hab ich seit dem nicht mehr gesehen. Dafür hatten wir den Führerschein schon mit 14. Und unsere Mopets sind 65 und manchmal auch schneller gefahren.
Ich hatte tatsächlich gerade Probleme damit und kam auf "zwischen 68 und 75". Aber ich bin beim durchlesen der Frage auch als heutiger Europäer insgeheim davon ausgegangen, dass von den 100 Leuten auch Leute andere Sprachen als Deutsch oder Russisch sprechen. Daher war die Lösung mit der 4-Felder-Tafel für mich zu eng gefasst, als dass ich sie in Betracht gezogen hätte 😅
Bin dafür, dass nicht nur Politiker mit solchen Aufgaben getestet werden, ob sie fähig für das Amt sind, sondern dass auch Wähler solche Tests bekommen, um zu Testen, ob sie geeignet sind mit ihrer Stimme zu bestimmen, wer geeignet ist das Land zu führen.
ich komme aus NRW und habe so etwas noch nie gesehen. Finde ich sehr interessant. Ich weiß aber warum es das bei uns nicht gab: Englisch hat in den 70er Jahren so gut wie niemand gesprochen und russisch war ja "auf der anderen Seite" 😂
Das alles ist Sache von Konzentration und Fokus auf die Mathematik! Mein erster Gedanke, beim Blick auf die Aufgabe (im Thumbnail): "sind genug Rettungsboote vorhanden". Gleichzeitig hatte ich vor Augen, wie im Film Titanic, das Orchester durch den Ballsahl fiel, als das Schiff Schlagseite bekommen hatte. Genau wie die Aufgabe mit den Zügen, erster Gedanke: "ist die Strecke eingleisig?" 😉😅
Jahrgang '68, habe was dazugelernt, Danke dafür, genial einfach mit der Methode! Es wäre schön, wenn die Bildungsvermittlung in D wieder besser werden würde, sehr, sehr wichtig! Grüße!
Ich finde es bedenklich, dass hier viele Intelligenz immer noch mit mathematisch kognitiver Intelligenz gleichsetzen und als Gegenpol daraus dann Dummheit ableiten, so wie es auch im Videotitel steht. Der Intelligenzbegriff hat einen Paradigmenwechsel durchgemacht und sollte viel weiter gefasst werden. Mathematische Intelligenz ist nur ein Teil davon. Für eine "gesunde" Gesellschaft sind verschiedene Formen von Intelligenz, wie etwa soziale oder emotionale Intelligenz erforderlich. Das sollte auch bei Bildungspolitikern langsam mal ankommen.
Zumal oft vergessen wird, dass auch bei kognitiver Intelligenz verschiedene Begabungen bestehen. Hochintelligente Menschen können Dyslexie oder Dyskalkulie haben. Vielleicht braucht man auf manchen Feldern mehr Unterstützung und Hilfsmittel. Das hat nichts mit mangelnder Intelligenz zu tun.
So ist es! Trotzdem finde ich die mathematische Intelligenz beindruckend, auch wenn sie im Leben, um erfolgreich zu sein, längst nicht hauptsächlich entscheidend ist. Zum Glück!
Ich hab's mit einem linearen Gleichungssystem gelöst. Symbole: R: die Anzahl der Leute, die Russisch, aber nicht Deutsch sprechen, D: die Anzahl derer, die Deutsch, aber nicht Russisch sprechen, B: die Anzahl derer, die beide Sprachen sprechen. Dann ergeben sich aus der Aufgabenstellung die Gleichungen I: D + B = 75 II: R + B = 83 III: D + B + R = 100 - 10 = 90. Das sind drei Gleichungen mit drei Unbekannten, die kann man dann auflösen, wie man will. Ich habe Gleichungen I und II addiert und dann III davon subtrahiert, dann steht da schon direkt B = 75 + 83 - 90 = 68 ohne weitere Umformungen. Ich finde so komplett formalisierbare Lösungen immer schöner als solche "mit gesundem Menschenverstand", weil man eventuelle Denkfehler da einfacher findet. Die von dir vorgeführte Vierfeldermethode gefällt mir aus demselben Grunde auch sehr gut.
Ich habe es so im Kopf gelöst: 100-10=90 die entweder russisch oder deutsch sprechen. Wenn man jetzt z.B. 90 Felder in einer Reihe annimmt und von links 83 mit einer Farbe und von rechts 75 mit einer anderen Farbe kennzeichnet, dann ist die Anzahl der Felder, die mit beiden Farben gekennzeichnet ist 90-(90-83)-(90-75)=68. Also können 68 Personen russisch und deutsch.
Vielen Dank, dass Sie weiterhin und zunehmend auch solche Thematiken in den Fokus rücken und kein Nlatt vor den Mund nehmen. Ihr Kanal wird auch gesellschaftspoliitisch immer wichtiger. Ich glaube allerdings, dass diese Aufgabe auch vor 40 Jahren in Westdeutschlland die Schülerinnen und Schüler in der 5. Klasse scheitern hätte lassen. Eventuell hätten in noch früheren Jahrgängen die damals noch vermittelten Kenntnisse in Mengenlehre geholfen,. aber ohne Kenntnisse von Begriffen wie "Ereignis/Gegenereignis" und einer Klärung dessen, was dieselben überhaupt bedeuten sollen, würde man als Schüler auch damals auf Granit gebissen haben.
1990 sind solche Sachen auch noch in 5. Klassen an bayrischen Gymnasien in Schulaufgaben drangekommen. Bei uns (mathematisch naturwissenschaftliches Gymnasium) war sowas immer als "Knobelaufgabe" - meistens letzte Aufgabe - einer Schulaufgabe integriert. Wenn man sonst keine Fehler hatte konnte man auch ohne diese Aufgabe grade noch ne 1- erreichen. Auch später waren anspruchsvolle Aufgaben - gekennzeichnet durch Punkte neben der Aufgabe, 1 bis 4 schwarze "Knubbel" immer noch Bestandteil der Hausaufgabe und auch von Schulaufgaben.
Ha! 68! Richtig gerechnet! Sogar ohne diese mir neue Vierfeldertafel, nur mit Logik und intuitiv: 100 - 10 = 90. 75 + 83 = 158. 158 - 90 = 68! Dabei war ich als Schüler eher schlecht im Rechnen. Man muss auch etwas ehrgeizig sein.
Hallo Tag Träumer , genauso bin ich auch zum richtigen Ergebnis gekommen , ich war auch keine grosse Leuchte in Mathe , bin aber im Leben sehr gut zu recht gekommen
@@gundaundmanfredmeyer1589 Rechnen ist also nicht lebenswichtig, das vermutete ich schon damals in der Schule. Wir hatten ja in der Schule die sogenannte und längst überholte Mengenlehre. Vielleicht blieb bei mir davon etwas hängen, was mir beim Lösen der Aufgabe hier half. Mengenlehre war Ende der Siebziger- oder Anfang der Achtzigerjahre Avantgarde und umstritten. Geschadet hat es wohl nicht. Mir gefielen die Plastikplättchen.
Die Allgemeinbildung ist bei Menschen die in der DDR zur Schule gegangen ist definitiv besser als heutige Schulkinder. Aber generell ist das den aktuellen Möglichkeiten der Ablenkung geschuldet und das Internet macht auch lernfaul.
Kurze Erklärung zum Venn-Diagramm: Insgesamt sind es 100 Personen. Im äußeren Kreis sind 10 Personen, die beider Sprachen nicht mächtig sind. Bleiben 90 Sprachkundige. Nehmen wir die 83, die Russisch sprechen, und 75, die Deutsch sprechen, zusammen, kämen wir auf 158. Da hätten wir also 158 - 90 = 68, die wir doppelt gerechnet haben, die also in der Schnittmenge liegen.
Typische Aufgabe, die man auch mit dem sogenannten gesunden Menschenverstand lösen kann. Ich finde es manchmal auch gefährlich wenn man für jede Aufgabe immer irgendein Schema braucht. Dann denken die Leute nicht mehr nach und sagen nur: Ich hab kein Schema -> kann ich nicht lösen.
Das, was du als „sogenannten gesunden Menschenverstand“, verwendet auch ein Schema. Vielleicht nicht bewusst, aber ohne irgendeine Vorgehensweise (= Schema...) kann man die Aufgabe nicht lösen.
@@berndkrugefährlich im eigentlichen Sinne ist es sicher nicht. Das Problem ist m.M.n., daß gar nicht erst versucht wird, sich eine Lösung zu erarbeiten. In der realen Welt braucht man Lösungskompetenz. Die bekommt man aber nicht, wenn man ein vorgegebenes Schema verwenden soll, sondern durch eigenes Nachdenken.
Nachdem ich gerade das letzte Kind durch das Schulsystem gebracht habe, und selber auch viel als Trainer mit Kinder arbeite, kann ich sagen, dass es zwei Probleme mit unserem Schulsystem gibt. 1. Die konsequenzlose Erziehung, sowohl zu Hause als auch in der Schule. Die Kinder kommen mit quasi allem durch. Man muss auf die Kinder eingehen, ihre Wünsche und Emotione ernst nehmen, aber ihnen auch klar machen, daß jede Handlung und Entscheidung Konsequenzen hat im Leben. 2. Unser Schulsystem ist vollkommen veraltet,technisch noch im letzten Jahrtausend. Damit kann man kein Kind mehr begeistern. Und damit ist das Interesse der Kinder an Schule in der Regel gleich null.
Elegantes Werkzeug. Ich finde es allerdings gerade in Mathe immer wichtig, dass man versteht, was man da macht und nicht nur auswendig gelernte Werkzeuge anwendet. Wenn man es nicht wirklich verstanden hat kann es leicht passieren dass man sich das falsche Werkzeug heraussucht. Dieser Aspekt kommt mir in der schule häufig zu kurz. "A fool with a tool is still a fool." Ansonsten: Tolles Video und super vorgetragen!
@@dmutub67 also, die Differenz zwischen denen, die mindestens eine der beiden Sprachen sprechen und denen, die überhaupt eine dieser Sprachen sprechen ist 68. Und erklären, warum was, wie ist muss ich zum Glück seit 1984 nicht mehr. Seit dem reicht es, wenn es stimmt.
@@dmutub67 Es sind 100 Leute auf dem Boot.Die 10 die weder deutsch noch russisch sprechen kannst Du vergessen, also sind nur 90 relevant. Russisch 83+75 nur deutsch und davon ziehst du die 90 wieder ab.
Hallo, ich würde es anders rechnen. 100 - 10 = 90 sprechen mindestens D oder R. Dann 90 - 83 = 7 D; 90 -75 = 15 R; 7 + 15 = 22 ; 90 - 22 = 68 Sprechen D und R. Ist das ok oder ist das nur ein Zufall?
Ich wuerde als erstes ueberlegen, wie viele enttweder deutsch oder russisch oder beides sprechen. Das sind 100-10=90. Von diesen 90 sprechen 15 (90-75) kein deutsch, also nur russisch (Sprachenkenntnisse in anderen Spachen als deutsch und russisch lasse ich hier unberuecsichttigt). Von diesen 90 sprechen 7 (90--83) kein russisch, also nur deutsch. Die Zahl der Personen, die sowohl deutschh als auch russisch sprechen ist damit 90-15-7=68 (15 sprechen kein deutsch, 7 kein russisch, der Rest spricht beides, weil von den 90 ja jeder entweder deutsch oder russisch spricht). ich wuesste nicht, warum ich mir dazu eine Tabelle erstellen sollte.
+++ Reaktion auf Kommentare +++
1) Erfreulich zu lesen, dass viele das Vierfelderschema noch nicht kannten und daher Gewinn aus dem Video ziehen konnten. Natürlich kann man diese Aufgabe auch ohne jede Technik lösen, einfach nur durch Logik. Den oft gelesenen Vorwurf, das vorgetragene Schema dokumentiere die Hilflosigkeit der heutigen Schüler, weise ich allerdings entschieden zurück. Letztlich unterstützt es das Verständnis, v.a. bei Schülern, denen Mathe nicht so leichtfällt.
3) Manche behaupten, die Aufgabe sei nicht eindeutig gestellt. Ist sie natürlich schon. Wenn es z.B. heißt "75 sprechen Deutsch", so wird in diesem Satz keine Aussage über andere Sprachen getroffen. Es heißt weder "75 sprechen nur Deutsch" noch "75 sprechen unter anderem Deutsch". In Kombination lassen die Angaben nur eine einzige Antwort zu, wie die Vierfeldertafel zeigt. Weit verbreitet ist der spezielle Irrglaube, es könnten maximal alle 75 Deutschsprechende auch Russisch sprechen. Wie soll das bei 100 Personen auf dem Schiff funktionieren? Dann müsste in das Feld links unten 0 und in das Feld rechts daneben ebenfalls 17 eingetragen werden, da ja insgesamt 100-83=17 nicht Russisch sprechen. Das widerspricht aber der Angabe "10" für das Feld rechts unten.
4) Meine Einlassungen zum Thema "Bildungsmisere" gefielen erwartungsgemäß nicht jedem. Das ist ok, wobei ich Vorwürfe wie "arroganter Lehrer" dann doch etwas seltsam finde. Warum lasse ich mich auf das Thema ein und werde es auch in Zukunft - dosiert - immer wieder tun? Um zum Nachdenken anzuregen. Wollen wir ein Land sein, das im internationalen Vergleich immer weiter absinkt? Was ist davon zu halten, dass die Abi-Schnitte trotz dieser negativen Entwicklung immer besser werden? Ist es gut, wenn 60% der Grundschüler ans Gymnasium übertreten und Realschulen und Mittelschulen zu Resterampen verkommen? Wenn ich nur ein paar Leute dazu anregen kann, mal genauer hinzusehen, welche Schulpolitik zu welchen messbaren Ergebnissen führt, dann war es die Sache wert. Und keine Sorge: das Thema ist kein Dauerbrenner auf meinem Kanal, in 90% der Videos geht es allein um Mathe :-)
Nach meiner Meinung kannst du das gerne öfter tun, es kann nicht falsch sein, wenn du dich äußerst was besser gemacht werden könnte. Was man meiner Meinung nach besser machen könnte, hab ich dir ja bereits im anderen Kommentar geschrieben.
Allein die Unterschiede zwischen den Bundesländern sind enorm groß und das sollte jedem zu denken geben...
Wie kann es sein, dass das Abi in Hamburg / Bremen / Berlin so viel wert ist im Endeffekt wie ein Realschulabschluss in Bayern, vllt sogar Hauptschulabschluss?
Irgendwas stimmt ganz gewaltig nicht... dann noch das Bulimie-Lernen also Masterplan, stete Orientierung an den Schlechtesten in der Klasse, sodass alle darunter leiden (heutzutage ist der Unterschied noch viel viel größer, da oft nicht einmal vernünftige Deutschkenntnisse vorhanden sind, selbst bei den -- aus Mangel eines besseren Wortes -- Biodeutschen ist das Sprachniveau unter aller Kanone!)
Keine Sorge, ich will hier keineswegs auf das Migrationsthema anspielen, selbst wenn es eine Korrelation gibt ist es definitiv keine Kausalität also nur vorweg bitte keine Unterstellungen diesbezüglich.
Unser Schulsystem ist wortwörtlich im A...
Danke, dass du uns zeigst, dass wir nicht verrückt sind und es leider Gottes wirklich der Fall ist heutzutage!
Lasst uns gemeinsam etwas dagegen tun und mehr Aufmerksamkeit darauf lenken, dass unsere Zukunft eine vernünftige und GUTE Bildung bekommt!
@@MrArkaneMageDer Unterschied zwischen den Bundesländern ist ein uraltes Thema...🥱 Ebenso "die Jugend von heute". Je älter wir werden, desto mehr glauben wir daran. Wir, die noch gute Bildung genossen haben und Leistung zeigten... Blicken wir 1, 2, 3 Generationen zurück, war es genau so. Blicken wir 1000 oder 2000 Jahre zurück, auch😊
@@telekommandos Ja, das mit den Bundesländern ist ein alter Hut... umso schlimmer, dass es nach fast 35 Jahren immer noch so ist - der erste große Fehler im System, den jeder kennt und keiner was tut.
Glaube übrigens du verdrehst da was...
Es geht hier keineswegs um "früher war alles besser", sondern um messbare Unterschiede!
Insbesondere im internationalen Vergleich sinken wir immer weiter ab, was die PISA-Studien beweisen und wie der Herr schon meinte... wie kann es sein, dass wir in PISA immer schlechter werden, aber die Abi-Noten immer besser?
Da stimmt etwas ganz gewaltig nicht am System.
Zumal die Bildung im Laufe der Zeit immer BESSER geworden ist, zumindest bis vor kurzem.
Bin übrigens noch keine 30 und es ist erschreckend zu sehen wie schnell es bergab geht. ^^
@@telekommandos Zitat Focus:
"In Deutschland ist das Bildungsniveau in den letzten zehn Jahren stark gesunken. Das geht aus dem „Bildungsmonitor 2023“ hervor. Die Abhängigkeit von Bildungserfolg und sozialer Herkunft hat sich weiter vertieft."
Interessante Aufgabe! Ich bin 70 Jahre alt und in der DDR zur Schule gegangen. Ich konnte die Aufgabe noch im Kopf lösen. Die Vierfeldertafel kannte ich nicht, wieder etwas gelernt! Danke!
MIir geht es ähnlich, bin erst 61, hab es auch im Kopf gemacht. Schittmenge.
Ich bin in Bayern zur Schule gegangen und habe es auch gelöst. Es gab und gibt keine West- oder Ostmathematik…
Bin Jahrgang 51 und in der DDR zur Schule gegangen. Konnte die Aufgabe natürlich lösen. 😀
Also ich bin 22 und konnte es auch innert weniger Sekunden im Kopf lösen.
Die Tafel hat mich (auch wenn ich sie lesen und verstehen kann) nur verwirrt 😅.
Was bei mir wahrscheinlich definitiv nachgelassen hat, im vergleich zu euch, ist die „Kopfrechnungsfähigkeit“, aber das geschieht halt, wenn man immer den Taschenrechner mit sich trägt.
Aber das Verständnis hinter der Aufgabe, sehe ich wirklich nicht als schwer und diese Zahlen gehen auch noch gut im Kopf.
Ich bin Baujahr 82, aus dem tiefen Westen und habe die Fachhochschulreife. Habe es leider nicht hinbekommen. Aber Logik und Mathematik waren schon immer meine Problemfelder. Mir liegen Sprachen besser. Die Vierfelder-Tafel ist mir nie begegnet, auch nicht in der Mittel- und Oberstufe auf dem Gymnasium. Da bin ich mir ziemlich sicher. Wieder was dazu gelernt.
Dito. Gymnasium, älterer Jahrgang, von dieser Tafel nie was gehört und wie immer bei Textaufgaben zu viel gedacht statt gerechnet.
Der Hinweis des Lehrers geschieht zurecht- und danke für die Lernhilfe :). Aber wie manche rumreiten auf der jungen Generation ist daneben. Und klingt noch dazu wie unsere eigene ältere Generation.
Baujahr 79, habs trotz 2 Glas Wein nach kurzem Nachdenken ausgerechnet. 4 Felder Tafel habe ich nicht gebraucht, habe es allerdings etwas umständlich gerechnet. 75+83=158, 158-90=68. Die Leute, die bei der Summe als 90 sind, müssen die sein, die doppelt gezählt wurden.
d=75; r=83; 100-10=d+r-x; x=68 (Jahrgang 65, aufgewachsen in Thüringen) 😊
Genau.👍 Das Vorgehen mit den 4 Feldern kannte ich nicht. 🙂
@@Christiane9Das brauchten wir früher auch nicht, egal ob Ost oder West, wir konnten noch denken 😉
Vier Felder 😂 so einfach wie die grünen Politiker. 😉
@@entaroardun Ich kann mir zwar nicht vorstellen, in welcher Art und Weise ich jemanden respektlos behandle durch die simple Feststellung der Tatsache, dass man früher den Kindern in der Schule noch gelehrt hat, selbständig zu denken, Probleme logisch zu erfassen und eine effiziente Lösung zu finden. Aber okay, wir sind ein freies Land, jeder soll seine Meinung haben.
Fakt ist, dass das Wissen bei den heutigen Kids nur sehr sporadisch und selektiv vorhanden ist, und das auch nur, wenn die Eltern nach dem Unterricht zu Hause den Job des Lehrers übernehmen und den Kindern die Dinge beibringen, die wirklich wichtig sind. Wenn man heutzutage eine Schule hat mit sagen wir Mal 50 Lehrern, dann sind darunter maximal 3-4, den den Beruf tatsächlich aus Passion machen. Und selbst die können bei den versch... Schulsystem nicht viel machen, wenn die Klassen aus 30, 35 oder noch mehr Schülern bestehen, da kann der beste Lehrer nichts machen, wenn er nicht mal die Möglichkeit hat, sich so um seine Schüler zu kümmern, wie es nötig wäre, um eine einwandfreie Bildung garantieren zu können. Ergo, das Wissensniveau nimmt kontinuierlich ab, weil die Kinder zum einen nicht mehr lernen, wie man richtig lernt und zum Anderen nicht beigebracht bekommen, selbständig zu denken und so alleine auf Problemlösungen zu kommen. Und wer es nicht kapiert und der Zeit, die der Lehrer hat, um den Stoff 30 oder mehr Kids beizubringen, der kriegt das Lösungsheft in die Hand gedrückt und Brauch sich nur noch berieseln lassen. Auf das Fehlen von Schulnoten in den ersten Klassen will ich da gar nicht tiefer eingehen, nur soweit, dass die Kids dadurch nicht mal die Motivation haben, etwas zu lernen, es gibt ja schließlich keine negativen Konsequenzen.
Vielleicht möchten Sie ja unter dieser Voraussetzung ihren Kommentar noch einmal überdenken. Für eine tiefer gehende Diskussion darüber bin ich jederzeit zu haben.
Okay, also:
d=75; r=83; 100-10 = d+r-x; x=68
100 - 10 = d + r - x | +x
90 + x = d + r | -90
x = d + r - 90
x = 75 + 83 - 90
x = 68
=====
Sehr guter Lehrer, gut vorgetragen… fair und respektvoll..
Was wäre denn unfair und respektlos? Sowas wie "Die Russen und die anderen Ausländer, die beide Sprachen nicht können, weisen wir aus, dann sparen wir uns das Rechnen"? 😂
👍👍
Das ist Mengenlehre, wie z.B. auch:
Wenn drei Personen in einem Raum sind und fünf gehen raus, müssen zwei eintreten, damit keiner drin ist. 😊
ich lach mich kaputt
So wurde mir gefühlt Mathematik vermittelt in der Schule😂
😂🤣🤣👍
90 die mindestens eine der beiden Sprachen können.
75 Deutsch bedeutet 15 kein Deutsch
83 Russisch bedeutet 7 kein Russisch
15+7=22 die nur eine Sprache sprechen
90-22=68 die beide können 🤷♂️
Die Technik nennt sich Logik 😅
Wobei man mit "Logik" nicht mehr so einfach weiterkommt, wenn man auf 5 Merkmale in 20 Ausprägungen geht und einen Chi^2-Test machen will. Dafür ist die einfache Vierfeldertafel extrem praktisch, um das umfangreichere Problem zu verstehen.
@@DornigeChanceoh doch: Es wurden 200 Jugendliche nach ihrem digitalen Konsumverhalten (weniger als 1h, 1h bis 3h, 3h bis 5h, mehr als 5h) befragt. Jetzt würde man ein paar Infos vorgeben. AFB 1 wäre, die Tabelle zu zeichnen und zu ergänzen. AFB 2 würde Fragen zu Wahrscheinlichkeiten stellen.
AFB 3 könnte so aussehen: Bestimmen Sie, ob es einen signifikanten Unterschied zwischen Jungen und Mädchen gibt.
Viel Spaß dabei, das ohne die Tafel zu machen
@ChristianOtto-b2g
Die VORGABE eine Tabelle zu zeichnen ist keine Information über die 200 Jugendlichen, die einen weiter bringt .
Die Jugendlichen könnten alle männlich sein, es gibt keine Info dazu in der Aufgabe.
Wenn man laut "Info" eine Tabelle zeichnen MUSS , dann darf man sie nicht ohne lösen, selbst wenn man das könnte.
Das ist Logik 🙃
LG
@@Thomas-w8p4q wer lesen kann, ist klar im Vorteil und willkommen auf der Meta-Ebene. Um über eine Aufgabe sprechen zu können müssen keine konkreten Infos vorgegeben werden. Aus Zeit- und Platzgründen habe ich darauf verzichtet, mir Zahlen auszudenken. Das könne Sie /kannst Du ja aber gerne machen. Im Übrigen ist auch 0 Jungs zu befragen kein Problem für die Aufgabe.
Eine Tabelle zu zeichnen, ist nicht notwendig, aber sicherlich die übersichtlichere Art der Darstellung.
Und wie immer fängt man nicht gleich bei einer 5×10-Tabelle an, sondern beim einfachsten sinnvollen Fall 2x2. Insbesondere wenn es um die Aufstellung der Test-Statistik geht, die über x_ij definiert wird, macht eine Tabelle mehr Sinn, als es über Ihre "Logik" zu versuchen.
Genau das war auch mein Lösungsweg.
Habe heute wieder etwas gelernt. Dankeschön für die gute Darstellung der Aufgabe und deren Lösung.
ich hab's mit Mengen gelöst :-) von der Menge aller Personen (100) sprechen 10 weder Deutsch noch Russisch, bleiben 90 die Deutsch und/oder Russisch können. Die Menge aller Russisch sprechenden ist 83, die aller Deutsch sprechenden 75. Wären beide Mengen getrennt also 158. Diese Menge muss auf die 90 abgebildet werden, also müssen 158-90=68 beides sprechen.
Vierfeldertafel ist aber einfacher 😀
Vierfeldertafel kannte ich nicht ,ich hab es mir im kopf als schnittmenge der 83R und 75d in der 90 menge vorgestellt
@@Engy_Wuck Ich wüsste nicht mehr, ob wir in der DDR die Mengenlogiktabelle als Vierfeldertafel bezeichnet haben? Ich weiß aber noch, dass wir aus solchen Textaufgaben (in der Alt-BRD hieß es wohl „Sachaufgaben“) kreisförmige oder rechteckige Venn-Diagramme mit Schnitt- und Ausschlussmengen entwickelt haben, um dann die richtigen Teilmengen zu addieren oder zu subtrahieren.
In einer Vierfeldertafel steht in den vier zentralen Feldern jeweils der die Anzahl der Elemente des Durchschnitts zweier Mengen - die Vierfeldertafel benutzt also auch Mengen zur Darstellung.
@@herbertwedelmann395 In der Bundesrepublik hieß das damals auch Textaufgaben, vielleicht wurde es später geändert. Und ja, wir haben damals in NRW in der Grundschule auch Mengenlehre gemacht (mit den LÜK-Plastikplättchen), das war eine Zeit lang eine Mode. Deshalb glaube ich auch, dass ich das in der 5. Klasse in den 1980ern vermutlich hingekriegt hätte.
@@halvarf Das glaube ich. Ich bin der Meinung, dass die westdeutschen 68er in den und über die Hochschulen ab den 80er Jahren das westdeutsche Bildungssystem schrittweise heruntergewirtschaftet haben. Von der guten Didaktik und der industrienahen polytechnischen Ausbildung in der DDR wollten die westdeutschen Entscheider nach der Deutschen Einheit nichts wissen.
In meinem Maschinenbaustudium in Lübeck hatten wir mehrere, wirklich gute + preisgünstige Fachbücher aus dem "Maxim-Gorki-Verlag" der DDR.
Auch ich hatte im Tontechnikstudium in Düsseldorf - vor 44 Jahre - das Mathebuch 'Analysis für Ingenieure' vom 'VEB Fachbuchverlag Leipzig', preisgünstig und gut.
Schlueße mich an. Ich hatte zusätzlich zum Biobuch der Schule eines aus der DDR. Wenn man die Propaganda ignoriert hat, war es so viel besser. Galt entsprechend leider nur für Naturwissenschaften, aber da war klasse Literatur dabei.
Als ich in der 5. Klasse war (1985-86), lautete die Frage: "Wie heißt der Kapitän?"
Ich bin Ü60 und habe von dieser Art zu rechnen noch nie was gehört. Mein Bruder zeigte mir dieses Video und ich habe es im Kopf gelöst. Mein Bruder war verblüfft. (100-10)=90
(90-85)=5
(90-73)=17
90-(5+17)= 68
Zusätzlicher Lösungsweg:
Da die Frage lautet, welche Personen _beide_ Sprachen sprechen, kann man von den Deutschsprechenden 75 auch gleich die _nicht_ Russischsprechenden 7 (90 - 83) abziehen und erhält ebenfalls 68 (75 - 7).
Das geht selbstverständlich auch umgekehrt: von 83 Russischsprechenden die nicht Deutschsprechenden 15 (90 - 75) abziehen, ergibt logischerweise ebenfalls 68 (83 - 15).
@@sk.43821 Zusätzlicher Lösungsweg:
83R+75D-90gesamt=68RD
Einfach super.
Die Art der Lösung ist genial.
Es gab eine Zeit,ich konnte vieles im Kopf rechnen.
Da es nicht gebraucht wird ,fehlt die Übung,daher hat mir das spass gemacht es war sehr interessant
So etwas müsste öfter im RUclips kommen
Gute Zeit
Auch, aber ich habe mir gedacht, die 10 spielen keine Rolle. Also 90 betrachten, wie kommt das hin? die 75 gedacht in die 83 packen, und solange einen rausnehmen, bis man auf 90 kommt von 83 ausgehend, also nach 7 Schritten. Diese 7 dann von 75 abziehen = 68.
Ausgezeichnet, Du bist sogar mit anderen Zahlen auf das richtige Ergebnis gekommen.
Vielen Dank für die objektive Einschätzung eines Fachmanns zu solch einem wichtigen Thema. Solche Fachkräfte wünsche ich mir überall. Beste Grüße!
Das ist doch ganz einfach.. Von 100 sprechen 10 weder russisch noch deutsch. Bleiben 90, von denen 83 russisch sprechen.. Also 7 nur deutsch.. 75 sprechen deutsch, also 15 nur russisch.. 15+7=22, die nur jeweils eine Sprache sprechen.. 90-22=68,die beide Sprachen beherrschen..
Oder du ziehst die 7 rein Deutsch sprechenden von der Gesamtheit der Deutsch sprechenden ab: 75 - 7 = 68. Fettich.
@@chrisa.4937oder du ziehst von denen die russisch sprechen (83) die rein Russisch sprechenden (15) ab. 83 - 15 = 68
War auch mein Lösungsweg!
Ich hab’s auch so über diese Querdenkerlösung logisch gelöst 😎
Naja, ich hatte die simplere Lösung, die hier gibt auch noch eine neue Unterteilung, Einsprachler und Mehrsprachler. Welch ein Luxus.
Jetzt bringen wir auch noch Engländer mit ins Spiel, dann wird's aber richtig kompliziert!
Jahrgang 65, Hessen. Geniale, mir völlig unbekannte Technik. Super, dankeschön.
Jahrgang 1953. Diese Technik ist mir auch neu. Soll mal einer sagen, dass man im Internet nichts lernt!
Bayern, Abitur 87. Auch noch nie gehört.
Ich bin jahrgang 60 und in der DDR zur Schule gegangen und kannte diesen Lösungsansatz auch nicht
Also wir haben das damals so gelernt: Wir haben 100 Personen. Zuerst nehmen wir die 10 Leute weg, die weder Deutsch noch Russisch sprechen. Jetzt haben wir noch 90 Personen übrig.
Von diesen 90 Leuten sprechen 83 Russisch, also bleiben 7 übrig, die kein Russisch können. Dann schauen wir uns nochmal die 90 Leute an, und wenn wir die 75 wegnehmen, die Deutsch sprechen, bleiben 15 übrig, die kein Deutsch können.
Jetzt addieren wir die 7, die kein Russisch sprechen, und die 15, die kein Deutsch sprechen. Das ergibt 22 Personen. Wenn wir diese 22 von den 90 abziehen, bleiben 68 übrig, die sowohl Deutsch als auch Russisch sprechen.
Die vier viertel Tafel haben wir vor 50 Jahren nicht in der Schule gelernt!
Ich habe es auch so gerechnet. ( 5 Klasse liegt schon lange hinter mir- in der Sowjetunion, im Jahr 1974)
So hab ich das auch gerechnet,bin auch in der DDR zur Schule gegangen u.bin auch fast 70 J.😊👍
Beste Darstellung. Konzentrierte Schritte. Und heutzutage fehlt es an der Konzentration. Es wird zu viel herumgespielt und gedaddelt.
Fast genau so.
Außer, diesen zusätzlichen Schritt mit den 7+15
Einfach direkt die 7 von den 75 abziehen und gut ist.
Die 7 die also kein Russisch sprechen, müssen demnach Deutsch können. Also kann man die 7 direkt von den 75 die insgesamt Deutsch können abziehen, weil diese ja nun nicht mehr in Betracht kommen für D+R.
gut erklärt, die tafel ist einfach nur doof und verwirrend!
aber es geht noch einfacher als ihre Rechnung. man addiert einfach die einer 5 plus 3 und die zehner 7 plus 8 zusammen = 15
5 plus 3 sind 8
7 plus 8 sind 15 , jetzt zählt man 1 plus 5 zusammen das sind 6
Oh Mann, ich bin auch schon verblödet.....ich hätte es nicht hinbekommen. Gut, dass es solche tollen Videos gibt.
Peinlich ich auch nicht…bin Geburtsjahr 1965 und war in Mathe zwar kein „Genie“ aber eine 2 war meistens drin…
Aber das kommt davon wenn man sich nur noch auf Taschenrechner, Computer etc verlässt und das „ logische denken“ verlernt…
@@rolandschlossmacher1859Zum Üben sind da die Angebote beim Einkaufen gut. Da kann man die Kenntnisse in der Prozentrechnung auffrischen. 😅
Ging mir genauso , nicht ärgern . 😊
Brauchen wir alles nicht mehr keine Sorge Dank Handy und KI kannst du jede Textaufgabe einsprechen und lösen lassen .. Mann muss nix mehr heutzutage wissen .. Mann muss nur wissen wo man Fragen muss um die Lösung zu bekommen ...
@@rolandschlossmacher1859 Aber Taschenrechner ersetzen das logiche Denken doch gar nicht, nur das Rechnen😅
Mit dieser Methode, kann man die Aufgabe lösen, ohne logisch verstanden zu haben, wieso. Der Ansatz es über logisches Schlussfolgern zu lösen, ist daher vorzuziehen, denn logisches Denken, bzw. analysieren und schlussfolgern ist in dieser Gesellschaft ohnehin extrem unterentwickelt, wie man täglich feststellen muss.
Den gleichen Gedanken hatte ich auch. Das Ziel der Textaufgaben ist Logik. Ich spulte den Inhalt ab und löste schlüssig. Diese hier gezeigte Methode ist Technik. Wenn das Eingepaukte nicht angewendet wird, verliert es sich. Die Aufgabe kann dann später wahrscheinlich nur, wenn überhaupt, mit großer Anstrengung gelöst werden.
Als bayrischer Gymnasiallehrer kann er leider nicht sagen, worin der Vorteil im aktuellen Lehrplan, für Schüler bzw. deutscher Gesellschaft besteht, dass dieses logisches Denken erst ab der 9. Klasse gelehrt wird. Vermutlich wird es bis dahin nicht in den naturwissenschaftlichen Fächern, im „Gesamtbild des Lehrplans“ benötigt. Sorry, ist für mich nur ein Beleg, dass das logische Denken heute vier Schuljahre später gelehrt und gelernt wird. Wozu sollte das gut sein? Die Studien zeigen eindeutig, dass es nicht gut ist!
So ist es, zwei sehr gute Kommentare.
Erleuchte uns Unwissende doch? Ich finde solche Knobelaufgaben, so nenne ich sie mal, sind ja ganz nett. Aber damit kannst du beim Handwerkern nicht viel anfangen. Bringt dir auch sonst nichts fürs Abitur beispielsweise.
Es will nicht jeder Mathestudent werden ;)
@ Genau das ist ja das, was Thomas Neumeier ausdrücken wollte. Ich habe die Aufgabe im Kopf gelöst ganz ohne Formeln. Die Schüler lernen im Mathematikunterricht nicht logisch zu denken, sondern sie lernen, wie sie nach einem Schema X eine Formel anwenden. Man kann kann am Gymnasium in Mathe eine 1. haben und dennoch an solchen Aufgaben scheitern, wenn die Vorgabe wäre, diese nur mit Logik zu lösen und Logik hilft immer weiter im Leben, auch im Handwerk. Auf diese Weise tragen Uni und Schule zur Verblödung bei. Man sollte in ca 2 Minuten wissen, dass die Lösung bei dieser Aufgane 68 ist und das nur mit Logik.
Bin 53, aber habe dies weder in der (West)schule gelernt, noch sonst in meinem Leben bisher gesehen. Mal wieder was gelernt. Wäre interessant gewesen, noch ein bisschen Hintergrundwissen zu dieser Technik zu bekommen. Also, "warum" das so funktioniert.
In so einer Vierfeldertafel steht in den inneren Feldern, wie oft die vier möglichen Kombinationen der beiden Merkmale (hier also "spricht D und R", "nur D", "nur R", "weder noch") vorkommen. Die Summe der beiden Zahlen einer Spalte/Zeile ist die Häufigkeit eines einzelnen Merkmals (also zB. "spricht D" oder "spricht kein R"), sie wird darunter bzw. daneben am Rand notiert; ganz rechts unten im Eck steht die Gesamtzahl - das ist wieder die Summe der beiden Zahlen daneben/darüber (die Summe muss in beiden Fällen gleich sein: wir haben die Gesamtzahl bloß auf zwei unterschiedliche Weisen zusammengezählt!) Der Trick bei diesen Aufgaben ist immer, dass ein paar Zahlen der Tabelle vorgegeben sind, aus denen man die restlichen berechnen kann, weil ja in jeder Zeile/Spalte die Zahl am Rand die Summe der beiden anderen Zahlen ist.
Mengenlehrer und Venn-Diagramm googeln, da findet man ein Menge darüber.
Bin in (Ost) Schule gegangen und kann mich daran 1976 auch nicht erinnern!😉😀 War wohl gerade Milch holen, wie man bei uns dann entschuldigend sagt. ( Zwei Schüler wurden in der 2 Stunde kurz vor der Frühstückspause immer zum Hausmeister geschickt, um den Milchkasten zu holen. 😅)
@@srh2301 bin im Osten zur Schule, es kam dann zwar die Wende noch bevor ich in die Oberstufe ging, aber da war auch keine Mengenlehre zu sehen. Die habe ich erst in einem Studium gelernt und finde das man es sehr schnell verstehen kann, wenn man sich die Grundlagen genau anschaut. Dazu empfehle ich RUclips Videos mit Grundlagen Mengenlehre und die Anwendung des "Venn-Diagramm". Es wird einem heutzutage sehr leicht gemacht das zu erlernen. Viel Erfolg 👍🏻
Ich bin in Westdeutschland zur Schule gegangen. So etwas habe ich in Mathematik nie gesehen. In der Grundschule haben wir in Mathe nur eine Art Mengenlehre gehabt (damals der letzte Schrei aus den USA, die es aber dort schon ein Jahr später wieder abgeschafft haben): grüne, gelbe, ... Kreise, Vierecke, ... hin und her schieben. Eher eine Beschäftigungstherapie, als wie Bildung. Nur ein Lehrer hat uns ein Schuljahr lang Rechnen beigebracht. Die weiterführende Schule war teilweise besser. Es kam ganz auf den Lehrer an. War er eine tiefgekühlte Schlaftablette, war auch das Lernerlebnis entsprechend. Monate lang die Mitternachtsformel, ohne zu wissen, wofür sie nützlich ist, und andere Zeitvergeudung. Erst auf dem zweiten Bildungsweg und später, habe ich es erfahren, dass Mathe und Rechnen keine Folter, sondern etwas wichtiges und vor allem interessantes ist.
Bin 1966 Eingeschult, Weihnachten war das Alphabet drin.
Meine Kinder im Bundesrepublik Schulsystem brauchten ein Jahr, weil das so vorgesehen war.
Leistung muss früh gelernt und erbrach werden
Viel gebracht hat es bei Ihnen aber nicht.
Meine Tochter kannte das Alphabet schon vor Eintritt in die Schule. Was beweist Ihre Aussage also?
@@herrmummEin kleiner Schreibfehler? Lächerlich, sich darüber aufzuregen. Haben sie sonst keine Probleme?
@@SHOW96HH
Das sagt sie doch deutlich. Heute ist das Schulsystem schlecht. Das weiß doch mittlerweile Jeder.
Habe gerechnet, von 90 Leuten
75 ja, 15 nein
83 ja, 7 nein
Sind 22 nein
Also 90-22= 68
In 5 min gelöst. Bin Jahrgang 1957 in Thüringen aufgewachsen 😊
Habe vor meinem geistigen Auge zwei Lineale gegeneinander verschoben und bin auf 68 gekommen. Bin Baujahr 1956.
Dito, aber Baujahr 1989 :)
Bj 74 *top*
Bin genau gleich vorgegangen und bin Baujahr 2005
Bei mir auch so bin Baujahr 2009 allerdings auch wohl der beste in mathe in meiner klasse
Die Lösung ist dein (ungefähres) Alter 😉
Für mich war es eine reine Denkaufgabe ohne viel rechnen zu müssen, es ist schon wahr, das viele Schüler das Denken verlernt haben und lieber im Internet nach der Antworten suchen.
Für mich war es auch eine Denkaufgabe
100-10=90, "weder D noch R" aus Rechnung eliminiert.
75+83=158>90, Schnittmenge "D und R" existiert.
158-90=68 Anzahl der Elemente in Schnittmenge "D und R".
Ja, so habe ich es auch gerechnet. Aber ich muss gestehen, das Schema bringt noch mehr Überblick.
korrekt :-) . aber für 5. Klässler ein unbrauchbarer Lösungsweg, die haben ja keine Mengenlehre!
Tatsächlich wieder mal eines von gar nicht sooo wenigen Beispielen, in denen mir im Leben klar wurde, dass Mengenlehre doch nicht komplett nutzlos ist. Gar nicht.
@@Yeeeiii... mengenlehre kommt in der 5. klasse dran. passt also, ich würde es auch mit den mengen und schnittmengen lösen. es ist im grunde fast das gleiche, nur etwas anders notiert...
Man kann ja schon froh sein, dass man einen Lehrer findet wie sie, der überhaupt druckreif, zielgerichtet und allgemein verständlich artikulieren kann. Weiter so!
90 Leute sprechen Russisch und/oder Deutsch. Wenn 83 Leute davon Russisch sprechen, dann sprechen 7 Leute nur Deutsch. Wenn es aber 75 Deutsch sprechende gibt, dann muss es 75-7 = 68 Zweisprachler geben.
genau so hab ichs auch gerechnet
des war auch so mein gedanke von 83 zu 90 ist ne differenz von 7 75-7=68. fand die gezeigte lösung aber auch nicht schlecht.
sie erklären die lösung in 10 sekunden, mathegym beansprucht 8 minuten
Ich auch, hat 10 Sekunden gedauert 😁
Ja den Weg ging ich auch
Da bin ich ja froh, dass ich mir im Kopf die richtige Lösung erarbeitet habe. Das Vierfelder-Schema kannte ich aus der Mathematik überhaupt nicht. Erinnert mich irgendwie an Logiktrainer. Finde ich gut, wieder was gelernt. Nur tue ich mich bei Sachaufgaben etwas schwer, wenn die Aufgabenstellung mit unrealistischen Zahlen hantiert. Hat aber trotzdem gepasst.
Die Fragestellung ist ja auch durch Logik lösbar.
Den gleichen Gedanken habe ich auch sofort gehabt. Grüße aus Magdeburg 🖖
Super Sympathischer Typ und Hammer Kanal, ich hab die Methode mit der Vierfeldertafel noch nie gesehen aber sehr interessant zu lernen. Auch den kleine Monolog am Anfang fand ich super interessant, wir wären alle deutlich weiter wenn wir auf die Meinungen von qualifizierte Menschen wie Lehrern bei der Gestaltung unserer Bildungspolitik hören würden. Was Kinder aus anderen Ländern leisten ist insane im vergleich, hier müssen wir einfach nachbessern wenn wir vorne bleiben wollen. Hab auf jeden Fall mal ein Abo dagelassen💪🏼
Super Beitrag! Ich kannte das Vier Felder Modell auch nicht aus der Schule (1974-1984), aber es erinnerte mich sofort an die Logikrätsel der Zeitschrift PM. Danke für den Input und machen sie weiter so! Unsere Kinder brauchen Lehrer wie sie, die auch über den Tellerrand hinaus schauen und das Bild als Ganzes betrachten! Grüße aus Magdeburg 🖖
Hab's im Kopf gemacht. 2 mal im Kopf geprüft und Bingo. Das Verfahren kannte ich nicht, obwohl meine eigene Mutter Mathelehrerin war.
Ich habe in der DDR erst ein Abi gemacht, dann in einem Jahr Abendschule einen Facharbeiter (3 Jahre NVA danach) und nun ein Hochschulstudium mit Dipl.-Ing. Das DDR-Schul- bzw. Berufsasubildungssystem war so gut, daß Skandinavische Staaten (vor allem Schweden) mit der DDR kooperiert haben, aber u.a. auch Singapur sich viel abgeschaut hat.
Ich war genau mit der Wende 1991 fertig und meine Ausbildung erlaubte es mir, nun im Kapitalis,us locker mitzuhalten.
Aber das DDR-Schulsystem hatte 2 große Nachteile:
1. Sport war zwar sogar bis in die Hochschule verpflichtend, aber stark an den militärischen Bedürfnissen der NVA bei den Prüfungen ausgerichtet (Klimmzüge, Gewichtstoßen, 3000m-Lauf und F1-Weitwurf; also Handgranate). Gerettet haben mich immer die guten Sportlehrer, die durften bei außerschulischen Sportleistungen die Noten nach oben korrigieren, so daß schwere und nicht so schnelle Jungs wie ich trotzdem nicht hängen blieben. Und das haben auch viele Sportlehrer so gemacht, sie wollten zum Schluß nur sehen, daß man Sport ernst nahm und sich Mühe gab.
2. Eine Katastrophe war der Fremdsprachenunterricht. Ob russisch, englisch oder französisch - unsere Lehrer waren nie in den jeweiligen Ländern unterwegs und das ganze war viel zu theoretisch / grammatiklastig aufgezogen. Schwerpunkt war zum Schluß (im Studium) nur noch das Übersetzen von fremdsprachigen Fachtexten ins deutsche. Wer in der Prüfung mit dem Wörterbuch also schnell genug war, der kam durch. Selbst unsere Russischlehrerin war nie in der UdSSR....
Später hatte ich das große Glück in Hanau in einer großen Maschinenbaufirma arbeiten zu dürfen und die schickten mich schon bald nach SO-Asien. Ich blieb fast 10 Jahre und drückte mir dort ordentlich mein englisch drauf. Nach ca. 2 Jahren war ich fließend, heute höre ich die Akzente nach den entsprechenden Ländern raus und kann den einen oder anderen nachahmen (Fr. Baerbock, bitte nehmen Sie unbedingt ab sofort immer einen Dolmetscher mit, es ist sonst richtig peinlich!).
Fast alle Kollegen in Hanau kamen aus den Alt-Bundesländern. Allerdings hatten die meisten damals auch durchaus noch eine richtig gute Schulbildung, Berufs- bzw. Hochschulausbildung durchlaufen.
Das Niveau auf beiden Seiten fing ab den 1990ger Jahren massiv zu sinken an und dieser schleichende Bildungsverfall setzt sich "nachhaltig" und konstant fort. Besonders schlimm fand ich das Bildungsniveau meiner US-amerikanischen Kollegen (Lieferanten, Kunden etc.) auch gegenüber den Kollegen aus Asien (alle möglichen Länder) und Australien.
In Asien (und anderen 3. Welt-Staaten) wächst eine riesige hervorragend ausgebildete junge Mittelschicht ran, die auch noch sehr leistungsfähig und -willig ist. Europa, du bist unter Druck, wie du es nicht ahnst....!!!
Vielleicht sollten wir langsam mal aufhören, schon fast religiös-esoterisch die "Natur" anzubeten und stattdessen uns wieder um Naturwissenschaften zu kümmern, sowie unsere Kinder ständig wie Weicheier zu behandeln.
Sich bequem und konsequenzenfrei auf die Straße zu kleben, um "den anderen" zu sagen, was "die" zu machen haben, bewegt keine Energiewende. Dafür muß man schon selber u.a. den schwierigen Beruf eines Elektrikers lernen.
Hey, Ihr "woken", ran an die Aderendhülsen und Schaltpläne 🙂. Zeigt's uns Boomern gerne, daß Ihr das auch könnt!
Peace! aus Dresden
"langsam mal aufhören, schon fast religiös-esoterisch die "Natur" anzubeten und stattdessen uns wieder um Naturwissenschaften zu kümmern" Danke!
Schön zusammengefasst. Viele der "Nachfolger" werden die Rente der Ü60 Generation nicht bezahlen wie es jetzt aussieht. Gut dass ich mich darauf nie verlassen habe....
Sehr richtig!
Mal ganz ehrlich, ich komm aus der DDR und diese Rechentechnik habe ich nie beigebracht bekommen. Solche Aufgaben mussten mit dem eigenen Verständnis gelöst werden.
Wenn ich sehe was meine Kinder heute in der Schule für Aufgaben bekommen, wie ihnen versucht wird schreiben bei zu bringen verstehe ich warum das Niveau sinkt. Es ist so viel Müll der weder Sinn noch Verstand hat in den Schulbüchern meiner Kinder.
Ich hatte 1975 in der 10.Klasse der POS eine 1 in Mathematik auf dem Abschlusszeugnis. Das entspricht wohl heute einem Uni-Abschluss.🤭
Zählt man die 10 + 75 + 83 zusammen, kommt man auf 168 Personen. Das sind 68 zu viele. Wie kamen die 68 zu vielen zustande? Die Personen, die sowohl Deutsch als auch Russisch sprechen, wurden doppelt mit eingerechnet. Zieht man also die Anzahl der tatsächlichen Personen von der Summe wieder ab, erhält man die Zahl der Personen, die beide Sprachen beherrschen.
10 + 75 + 83 - 100 = 68
Danke, Ihre Berechnung ist die beste und folgt der tatsaechlichen inneren Logik, da die 68 ja doppelt eingerechnet wurden. Das ist der springende Punkt.
Gut. Fast genau so habe ich es auch gemacht. Nur dass ich die Personen, die keine der beiden Sprachen sprechen nicht betrachtet habe, also 75+83-90=68. Ich also die 10 schon vorher abgezogen habe. Aber im Grunde das gleiche. Die Erklärung im Video ist für 5 Klässler viel zu kompliziert.
Das ist clever.
Das ist aber nicht Sinn dieser Übung. Auch in der 5. Klasse geht es darum das Grundkonzept zu verstehen und dafür sind solche Aufgaben da. Und dann kann man es auch auf deutlich komplexere Aufgaben anwenden.
Beste, einfachste und logischte Antwort viel verständlicher als das Tabellengedöhns im Video ...
Unsere Lehrbücher waren in allen Fächern um Längen besser. Ich bin zu beiden Zeiten in der Schule gewesen. Unsere Bücher waren klar formuliert, ohne Schnickschnack, und verständlich.
Da kann ich dir nur recht geben ,kein Wunder wenn die Kinder schlecht lesen und schreiben können , das Lesebuch ist keinLesebuch mehr ,steht nur Blödsinn drin .Habe meinem Enkel , jetzt 3 .Klasse das Lesebuch von meiner Tochter aus DDR Zeitenzum lesen gegeben..
@@birgitdannenberg3329schonmal Texte von einem Kind gelesen, welches nach der „schreibe wie du es sprichst“ Methode gelernt haben? Es ist so furchtbar…
@dudzi2121 Stimmt , finde ich auch furchtbar . In Hessen wurde in Druchbuchstaben geschrieben , jetzt wieder Schreibschrift , war auch unmöglich ,manche Kinder haben da auch wieder Schwierigkeiten sich umzustellen .
Das mit den vier Feldern habe ich noch nie gehört. Trotzdem hatte ich ziemlich schnell die Lösung, obwohl mein erster Gedanke war „Wie soll das denn gehen?“… 100 minus 10, die weder R noch D sprechen. Von den restlichen 90 sprechen 7 nur D und 15 nur R. Die ziehe ich von 90 ab und hab 68. Ich kann mich nicht erinnern, dass wir in meiner Schulzeit in den 80ern (bis Anfang 90er) solche Beispiele gerechnet hätten. Vermutlich wäre ich als Schüler auch ausgestiegen dabei, muss ich ehrlich sagen. Mir kommt ohnehin vor, dass ich in Mathe mehr verstehe, je älter ich werde. Und es macht mir inzwischen sogar Spaß! Prozentrechnung in allen Varianten und Geometrie mochte ich aber schon in der Schule. Die habe ich verstanden. Der Rest war auswendiglernen…
90 Personen , davon 83 R , das sind 7 , die nur D sprechen und nicht R . Somit 75 -7 = 68 D + R .
Es freut mich zu sehen, dass die Situation (jetzt mal außerhalb der Aufgabe) so differenziert betrachtet wird. Einfach zu schimpfen, früher wäre ja alles besser gewesen oder alles aufs Bildungssystem zu schieben (obwohl es da massiv Optimierungsbedarf gibt) ist halt nicht der richtige Weg. Nicht die Rahmenbedingungen, sondern die Menschen, also die Lehrer, Erzieher, Eltern etc. fördern das Können der jeweiligen Schüler...
Jeder ist ein bischen verantwortlich, den Schuldigen sucht der, der's nicht sein will.
Die Rahmenbedingungen spielen in dem Fall eine erhebliche Rolle, nach meiner bescheidenen Meinung die Kombi aus fehlgeleiteter Fachdidaktik (die sich auch in schlechteren Lehrbüchern niederschlägt), Kürzung der Unterrichtsstunden und des Niveaus, Still- und Gruppenarbeit statt Frontalunterricht und Hausaufgaben sowie Druck von oben, möglichst viele Absolventen zu haben, wenig schlechte Noten zu vergeben und die ganze Bürokratie, die es früher gar nicht gab. Er hat natürlich Recht, wenn er sagt, dass ein Lehrer sich im Rahmen seiner Möglichkeiten auch widersetzen kann.
sehr schön. Habe (Abi in 1966) von Vierfeldertafeln erst als Nachhilfelehrer gehört, aber die sind mir hier nicht eingefallen, vielmehr habe ich das für mich „konventionell“ gelöst. „Konventionell“ kam mir dabei zu wenig systematisch vor und ich habe darüber etwas nachsinniert: so wie es bei einer guten Aufgabe sein soll!
Man kann es auch mit Mengenlehre und Logik im Kopf lösen.
Die Kreuztabelle ist natürlich als visuelle Struktur sehr hilfreich und ausserdem in empirischen Studien weit verbreitet.
Didaktisch würde ich neben "Vierfeldertafel" auch die Synonyme "Kontingenztabelle" und "Kreuztabelle" (EN: Cross Table) erwähnen. Das ist hilfreich, wenn man z.B. zwecks Studium in eine andere Mathematik-Kultur wechselt.
"Kreuztabelle" ist deutlich prägnanter als der alberne und zudem unkorrekte Begriff "Vierfeldertafel" (den ich auch nie gelernt habe, wir hätten das damals mit einfacher Mengenlehre gemacht, teilweise bereits in der Grundschule!)
Ich habe mal eine Frage. Diese Formel an sich war mor neu.
Ich hatte die Lösung eher im Kopf anders gerechnet aber kam auf die selbe Lösung. War das denn aber eher Zufall?
Mein Weg war:
100 - 10 die es nicht können sind 90.
83 bis zur 90 sind 7
75 - 7 = 68
War das Zufall oder war das halt einfach die Formel nur im Kopf.
Viel Wege führen nach Rom, 90-75=15 und 83-15= 68
Ich habe 1990 mein Abitur gemacht und hatte Mathe LK. Ehrlich gesagt, hatte ich bis jetzt noch nie von dieser Rechentechnik gehört. Ich hätte es auch über die Mengen gelöst.
Die Methodik wird vor allem in der Statistik (Ereignisse) verwendet und die kommt erst weit später dran. Man kann es aber einfach im Kopf ausrechnen. Das Schaubild dient nur der Veranschaulichung. Außerdem hilft es schwächeren Schülern überhaupt zum Ergebnis zu kommen, indem das Problem systematisiert wird...
Genau so geht es mir auch. Damals gab es in der ZEIT immer die "Logelei von Zweistein" (von Gero von Randow, glaube ich), und da gab es Rätsel, die ähnlich waren. Die Herausforderung liegt ja eigentlich darin, das logisch zu durchdringen, nicht einen gelernten Algo durchzugehen, der nur für einen ganz bestimmten Typ Aufgaben funktioniert.
Das wurde ja auch im Video gesagt: Es ist ein großer Unterschied, ob genau solche Aufgaben und dieser Lösungsansatz vorher mit der Klasse geübt wurden oder nicht.
@@halvarf Nein, nein, das Loesungsschema scheint mir schon relativ breit anwendbar zu sein. Solche Ereignistafeln sind in der Statistik Gang und Gäbe.
@@halvarf Wobei die Tafel praktisch ist, etwa wenn in den Mix noch eingeworfen wäre, dass unter den 100 Passagieren noch welche sind, die Polnisch, Englisch und Chinesisch sprechen und nicht nur diejenigen bestimmt werden sollen, die nur DE und RU sprechen, sondern alle fünf Sprachen.
Dazu müsste man anhand der gegebenen Daten mehrere Gleichungssysteme aufstellen, oder diese Daten kompakter in so eine Mehrfeldertabelle eintragen - es läuft im Ergebnis aufs gleiche hinaus, aber evtl. ist die Darstellung kompakter und bei einer voll ausgefüllten Tabelle kann man sofort jede beliebige Kombination sehen.
BTW. Ich kam mit der Vierfelder-Tabelle (ohne dass sie so genannt wurde) das erste Mal bewusst in Biologie in Berührung, als es um die Mendel'sche Erblehre mit dominant-rezessiven Merkmalen ging (8. Klasse).
@@florianmeier3186 Ehrlich gesagt habe ich solche Kreuztabellen zum ersten Mal im PM Logik Trainer gesehen. Vorher bin ich ohne ausgekommen, mit einfacher Mengenlehre! So Schnittmengen und Vereinigungsmengen. Hat dann auch gut bei der Stochastik im 12. JG geholfen...
Das könnte tatsächlich mein Mathebuch gewesen sein, ich war 1983 in der 3. Klasse, so oft wurden die nicht gewechselt. Solche Aufgaben fand ich immer trivial, auch die hier. 90 sprechen mindestens eine der Sprachen, davon 15 kein Deutsch und 7 kein Russisch. Bleiben also 68 Zweisprachige.
Habe Video angehalten und bin nach meinen Überlegungen zu der Formulierung:
68
das verstehe ich nicht: "die dann auch weder deutsch noch russisch sprechen."
@@WolfgangPedain
Habe auf kariertem Rechenpapier ein Quadrat gezeichnet von 10 x 10 Kästchen.
Die untersten 10 Kästchen habe ich mit einem Strich abgeteilt für die 10 Personen, die weder deutsch noch russisch sprechen, bleiben oben 90 Kästchen.
In die muss man 75 mal den Buchstaben D schreiben und 83 mal den Buchstaben R.
In allen Kästchen muss mindestens ein Buchstabe stehen.
Wenn man das so macht, dass in mehr als 68 Kästchen beide Buchstaben stehen, bleiben Kästchen leer, und leere Kästchen bedeuten weder deutsch noch russisch. In der Kategorie leere Kästchen haben wir ja unten schon 10, mehr als 10 dürfen es aber nicht sein.
Also kann es nicht mehr als 68 in der Schnittmenge D UND R geben.
Hoffe, ich habe mich nicht geirrt.
Gruß!
Ich danke Dir, dass Du das nochmal eingeordnet hast. Es liegt mir immer fern über die deutschen Schüler herzuziehen, dass sie angeblich zu dumm seien.
In den Kommentaren sieht man ja super viele Leute, die den Begriff Vierfeldertafel noch nie gehört haben, aber dennoch die Aufgabe lösen konnten. Ich glaube, das zeigt, wie kreativ die meisten Leute sind, was Lösungssuche angeht, was auch wiederum auf Schüler zutrifft
Ich denke, den meisten Leuten meiner Generation ist damals die Mengenlehre heftig eingebläut worden, das war damals der total coole neue Scheiß (naja, eigentlich deutlich älter, aber eben als Lehrmethode!) Bei mir hat's funktioniert, und bei vielen anderen wohl auch...
Ja, mit einem gewissen mathematischen Grundverständnis und einer Prise Kreativität lassen sich die meisten schulmathematischen Fragestellungen problemlos lösen, ohne dass man dafür Konzepte / feste Lösungsschemata wie Vierfeldertafel oder Dreisatz bräuchte.
An der Uni lehrt man diese Lösungsschemata übrigens auch nicht - und siehe da, der gesamte Schulstoff von Klasse 1-13 lässt sich plötzlich mühelos auf das erste Semester zusammenstauchen. In gleichzeitig viel größerer Tiefe als in der Schule.
In der Schulmathematik versucht man im Grunde, eine Abkürzung zu gehen. Man legt gar nicht so viel Wert darauf, dieses Grundverständnis aufzubauen. Stattdessen lernt man haufenweise vorgefertigte Aufgabenformate mit den dazugehörigen Lösungswegen auswendig.
Und dann heißt es bei einer Aufgabe, für die man nur im Zahlenraum bis 100 addieren und subtrahieren können muss: "Das können wir noch nicht, das kommt in unserem Bundesland erst in Klasse 9." Keine sonderlich schnelle Abkürzung, die die Schule da geht, könnte man meinen :D
Egal ob Ost oder West 🇩🇪, wir haben noch vernünftige Lernziele gehabt ( Grundrechenarten, Sprache, Rechtschreibung usw.) für " kein Bock aufs Lernen " die Erfolgskontrolle fiel dementsprechend aus 🤷♂️. Ich bin 1961 er Baujahr und im Westen aufgewachsen. Klasse erklärt. 👍
Lieber Herr Mathelehrer, sie sprechen mir aus der Seele. Leider hatte ich als Mutter sehr schmerzhafte Erfahrungen, was Matheunterricht angeht. Ich kann nur für das Land Niedersachsen sprechen, aber aus meiner Sicht die Ursache Nr. 1 ist der Unterrichtsausfall. Selbst bin ich nicht in Deutschland geboren, aber diese Aufgabe habe ich innerhalb von zwei Minuten selbst gelöst. An die Matrix habe ich zuerst auch gedacht, allerdings diese Aufgabe habe ich anderweitig gelöst, mit dem gleichen Ergebnis, obwohl meine Schulnoten in Mathe im Bereich "ausreichend" waren.
Als Grundschülerin der 1960er Jahre in Westdeutschland hatte ich zuerst Mengenlehre. Und die so verinnerlicht, dass ein Mengendiagramm zu einer so einfachen Aufgabe wie hier gleich vor meinem geistigen Auge erscheint und ich es so im Kopf lösen kann.
Ich sehe das genauso (Ossi, Unterstufe von 1966 - 1972) und meine Mutter (Grundschule von 1931 - 1937, jetzt 99)) ebenfalls und mit meiner Oma (Grundschule von 1905 - 1911) konnte ich in der Unterstufe Mathearbeiten berichtigen.
Also muß es wohl ein ganzes Stück am derzeitigen "Schul - System" liegen. Da beißt die Maus keinen Faden ab.
@@everardmeagaidh8774 1.Klasse war auch schon voll krass
Bin 71 und habe 1973 in NRW das alte Abitur gemacht. Bin heute noch fit im Lehrstoff bis ca. 11.Klasse (Drillfaktor!). Ich muss aber gestehen, dass ich von der Vierfeldertafel noch nie was gehört habe. Schüler aus NRW hatten 1965-66 zwei Kurzschuljahre, d.h. zwei Schuljahre in einem Kalenderjahr. Dazu wurde Lehrstoff gekürzt, gesichert bei uns Mengenlehre und Bruchtermen. Eventuell auch die Vierfeldertafel??
Wenn der Titel zum Klickbaiting wird der den Zeitgeist bedient. Finde ich schade da die Aufgabe an sich interessant ist. Bin vor Dekaden in die Schule gegangen und habe den Begriff 'Vierfeldtafel' nie gehört. Gelöst habe ich die Aufgabe allerdings genauso.
Und PISA oder IGLU messen nicht die Leistung von 'deutschen Schülern' sondern von 'Schülern in Deutschland'. Daraus könnte man jetzt wieder eine Rechenaufgabe analog der hier vorgestellten machen.
Als Lehrer im Brennpunkt kann ich dir sagen: Es sind auch die „deutschen Schüler“.
Die Statistiken zu Pisa zeigen, dass die soziale Komponente ausschlaggebender ist als die Migration, leider ist beides oft miteinander verwoben. Da könnte man jetzt aber auch fragen, wie das mit der Integration funktionieren soll wenn einige Überdeutsche schon anhand der Herkunft sofort zu wissen meinen wer was taugt und wer nicht und das auch deutlich zeigen, aber wenn man Chancengleichheit fordert ist man ja in gewissen Kreisen gleich linksradikal.
Sehr schön, wieder was gelernt, vielen Dank. Ich habe diese Technik vor 25 Jahren nicht gelernt, war wohl im Lehrplan nicht vorgesehen, genauso wie 3 Satz oder Strahlensatz.
5. Klasse? Im Saarland habe ich im 1. Schuljahr 1975/76 Mengenlehre gehabt. Diese Rechnung konnte ich mit Hilfe dieser Mengenlehre lösen: Menge aller Personen 100, Menge der weder D noch R sprechenden 10, Menge der D sprechenden 75 und Menge der R sprechenden 83 -> ergibt die Schnittmenge 68 können D und R!
Deine vier Mengen entsprechen genau den vier Feldern in der Tabelle...
Ja, wer erinnert sich nicht an die Mengenlehre in der 1.Klasse🙈
@@edhoc2 Du meinst, diese alberne "Vierfeldertafel" macht genau das, was die Mengenlehre uns lehrt!
Auch wir hätten sowas damals einfach mit Schnittmengen und Vereinigungsmengen gelöst, und wenn nicht im Kopf, so kann man diese Zahlen auch ins einfache Venn-Diagramm (das wir gar nicht so genannt hatten) reinmalen. Fertig!
@@holgerlay6977 Ja, die Mengenlehre war damals ein Diskusionsthema. Ich erinnere mich noch sehr gut an all die aufgebrachten Eltern und Leher, und Komiker a'la Otto und Emil, die sich drüber lustig machten. Aber genau so schnell, wie die Mengenlehre auftrat, war sie auch wieder verschwunden. Trotzdem konte ich diese Aufgabe problemlos damit lösen. Die vier-Felder-Methode ist mir aber fremd. Ich finde sie auch interessant als Lösung solcher Rechnungen.
Wo gibt es mehr solcher Logikaufgaben?
Ich scheiterte kläglich und möchte mich verbessern.
Da ich nach der 10 mit einer 4 in Mathe abgegangen bin, freue ich mich als 48 -Jähriger immer noch nach etwas Überlegung die Aufgabe ohne Blatt Papier lösen zu können.
Es lohnt sich die Kommentare zu lesen: Viele Wege führen nach Rom! Unsere Schüler - eigentlich alle Menschen - brauchen Raum und Zeit sowie herausfordernde Aufgaben um selber Lösungswege und Modelle für mathematische Probleme zu finden. Vielen Dank nochmal für diese Aufgabe und alle Kommentare.
Auch ich muß zu meiner Schande gestehen, diese Vier-Felder-Technik nicht gekannt zu haben. Haben mir das Video dann in Ruhe nochmal angeschaut. Vielen Dank dafür! Und ebenfalls war auch ich zuallererst (wie auch ein Herr weiter unten) auf eine viel zu große Personenzahl gekommen.
Interessante Technik der vier Felder-Tafel!
Der schulpolitische Abschnitt war besonnen und ausgewogen dargestellt!
Danke🙏
Lösungsweg von ChatGPT 4o
Die Aufgabe beschreibt eine klassische Mengenschnittmenge. Wir haben zwei Mengen:
75 Personen sprechen Deutsch (D).
83 Personen sprechen Russisch (R).
10 Personen sprechen weder Deutsch noch Russisch, also 90 Personen sprechen mindestens eine dieser beiden Sprachen.
Um die Schnittmenge zu berechnen, gehen wir folgendermaßen vor:
1. Es gibt 90 Personen, die Deutsch oder Russisch sprechen (100 - 10 = 90).
2. Von diesen 90 Personen sprechen 75 Deutsch und 83 Russisch.
3. Die Formel zur Berechnung der Schnittmenge lautet:
|D \cap R| = |D| + |R| - |D \cup R|
Wobei , also:
|D \cap R| = 75 + 83 - 90 = 68
Das bedeutet, 68 Personen sprechen sowohl Deutsch als auch Russisch.
Jahrgang '69, DDR Bildung, Mathe-Abi 1 und ich konnte es leider nicht mehr lösen... Die Vierfeldertechnik habe ich noch nie zuvor gesehen. Genial. Danke! Werde es meinem 6.Klässler-Kind zeigen.
Mathe Abi 1 und das nicht lösen können???? Auswendig gelernt wie so manche 1.0er??? oder denkst du vielleicht einfach zu kompliziert , da zu hoher IQ? ;) ich bin Ossi 1978, Abi 1998...kein Mathe. das ist simple kausale Logik... Es steht alles im Text, genau lesen. da ist nicht viel mit rechnen. ich habe dazu 10 Sekunden im Bett gebraucht. Man kann es auch mit Mengenlehre rechnen...oder eben Feldertechnik. Die aber halt nur was bringt, wenn es viel mehr Zahlenangaben sind
was kam beim 6. klässler raus?
Interessant, wie viele Wege zur Lösung führen. Mein Weg war folgender:
90 Personen sprechen Russisch oder Deutsch oder beides, davon können 83 Russisch - 75 Deutsch
Nun folgende Hypothese:
Wenn von allen 83 Personen die Russisch sprechen, ALLE auch deutsch können, dann muss es 90 - 83 = 7 "Deutschsprecher" geben, die kein Russisch können. Somit kann es nur 75 - 7 = 68 Deutschsprecher geben, die auch Russisch sprechen.
Geht umgekehrt genauso:
Hypothese II:
Alle Deutschsprachler können Russisch - also müssen 15 "Russen" kein Deutsch können: 90 - 75 =15
Diese 15 zieht man also dann von den 83 Russischsprachlern ab: 83 - 15 = 68
Hätte es nicht so ausdrücken können, aber meine Hirnwindungen sind wohl genau diesen Weg gegangen 👍🏻
Ich habe Euch zufällig gesehen, großartig, diese Wiederauffrischung
Wir brauchen mehr Lehrer wie Sie!
Wir brauchen ein anderes Bildungssystem was diesem Lehrer unterstützt
Ich bin Jahrgang 1970 und aus Sachsen, ich habe genau diese Aufgabe auch machen müssen in der Schule. Ja und es sind genau 68 Personen die Deutsch und Russisch können, meine Tochter habe ich dazu gleich mal gefragt, ( 8. Klasse) hat mich blöd angeschaut und gefragt was diese Frage soll, sie konnte damit nichts anfangen.
Aufgabenteil B: das Motorschiff macht einen Tankstopp beim "Klassenfeind". Wieviele Personen sind danach noch an Bord?
Der war gut! 😂
Volltreffer!😀😂🤣
Einer bleibt. Der IM 😁.
Ich kannte die Viefeldertechnik auch nicht und habe sie mit der gemeinsamen Schnittmenge auf einem Zahelnstrahl gelöst. Vielen Dank für die schöne Denkaufgabe und den neuen Lösungsansatz.
Ich merke doch, dass seit meinem an sich sehr guten Matheabitur Mitte der 90er einige Jahre ins Land gezogen sind. Beim Lesen der Aufgabe hatte ich tatsächlich erst mal gedacht, dass nicht ausreichend Informationen vorhanden wären - was aber natürlich bei einer Schulbuchaufgabe eigentlich nicht sein kann. Dieses Vierfelderding kam mir doch mal entfernt bekannt vor. Hab das irgendwo ganz, ganz tief in meinen Hirnwindungen abgespeichert.
"Mehr Eigenverantwortung" bin ich grundsätzlich dabei; man sollte aber bedenken, dass Eltern, die beim Lernen helfen können, in sich bereits einen Luxus darstellen. Viele haben selbst nicht die entsprechende Bildung genossen (ich war als Schüler spätestens ab gymnasialer Klasse 7 in der Hinsicht komplett auf mich alleine gestellt), andere sind voll berufstätig usw. Da kommen Bereiche zusammen, in denen sich Bildungs-, Sozial und Familienpolitik mindestens überschneiden.
Ich löse die Aufgabe durch eine grafische Überlegung:
Die Gesamtzahl der 100 Menschen interpretiere ich als einen Stab von 100cm Länge.
Die Anzahl 10 derjenigen, die weder R noch D sprechen, interpretiere ich als Länge 10 cm.
Die Anzahl R=83 derjenigen die (zumindest) R sprechen (von denen eine noch unbekannte Anzahl auch D spricht), interpretiere ich als 83 cm.
Die Anzahl D=75 derjenigen, die (zumindest) D sprechen (von denen dieselbe noch unbekannte Anzahl auch R spricht), interpretiere ich als 75 cm.
Nun gilt: Die Anzahl derjenigen, die mindestens eine Sprache sprechen, ist 100 - 10 = 90;
in Längen uminterpretiert: 100cm - 10cm = 90 cm.
Nun stelle ich mir R=83cm und D=75cm als ineinander geschobene Teleskopstäbe vor, die man beliebig auseinander ziehen kann. Da die Gesamtzahl derjenigen, die R oder D sprechen, gleich 90 ist, bedeutet das in der Uminterpretation in Teleskopstablängen: Man muss die ineinander geschobenen Teleskopstäbe R=83cm und D=75cm soweit auseinander ziehen, dass sie insgesamt eine Länge von 90cm abdecken. Man muss also den kürzeren Stab D=75cm um genau 7cm aus dem längeren Stab R=83cm herausziehen, damit insgesamt eine Länge von 90cm abgedeckt wird. Wenn man nun den Stab D=75cm um 7cm aus dem Stab R=83cm herauszieht, bleibt als Schnittmenge, also als Länge, auf der beide Stäbe ineinandergeschoben verbleiben, genau B=68cm.
Also: 68 Menschen sprechen beide Sprache R+D.
Wow, ich habe die Aufgabe in zwei Minuten im Kopf gelöst. Vierfeldertafel hat mich verwirrt, aber Ergebnis hat gestimmt. Übrigens, eingeschult bin ich in 1959 im UdSSR gewesen.
Wir ehemaligen polytechnischen Oberschüler kennen diesen Aufgabentyp als „Textaufgabe“. Drüben die Brüder und Schwestern auf den Haupt- und Realschulen, den Gymnasien nannten ihn „Sachaufgabe“. Eine der vielen ost-westlichen Sprachunterschiede wie Auslegeware / Teppichboden oder Plaste / Plastik oder Sonnabend / Samstag.
Bei uns (MItte-West) hieß das auch Textaufgabe.
2:53 Was wahr ist, muss ausgesprochen werden dürfen.
Das ist wahr und notwendig
Ich hab es so gemacht: 10 Leute sprechen beides nicht, bleiben 90.
Von denen sprechen 90 minus 83 KEIN Russisch, also 7. Und 90 minus 75 sprechen KEIN Deutsch, also 15. Wir haben also von den 90 Personen dann 22, die nur eine der Sprachen können. Der Rest spricht folglich beide Sprachen, und das sond dann, 90-22, eben 68.
Wirklich erstaunlich, wie viele Wege es gibt, das herauszufinden 😂
Kann mich als heute 77-Jähriger nicht daran erinnern, das Vierfelderschema beigebracht bekommen zu haben. Bevor ich jedoch die Kommentare gelesen habe, habe ich die Lösung über 75 (deutsch) + 83 (russisch) = 158 minus 90 ( weder noch) = 68 per Logik ermittelt.
Dito, so habe ich es auch gemacht :)
Ich kann mich jetzt nach dem Video zwar wieder daran erinnern, dass ich diese Methode gelernt habe, aber sie war mir tatsächlich gänzlich in Vergessenheit geraten.
Sehr schön erklärt 🙂. Vierfeldertafel macht man in NRW aktuell in der 10. Klasse. Wenn man das Thema früher behandeln würde, dann würden die Schüler auch früher die Aufgaben lösen können. Das wäre ein Thema, was Schüler schon früher verstehen könnten.
Die Älteren unter uns: Vierfeldertafel waren früher - bis in die 2000er Jahre rein, in NRW zumindest, kein Thema.
Mein Sohn ist und war ein sehr lebendiges Kind, er hat es geliebt zu lernen, er hat sich auf die Schule gefreut und es kaum abwarten können. Bis zum ersten Schultag. Es haben sich einige Dinge in der Schule und auf dem Schulhof ereignet, die sogar mich sehr erschreckt haben. Die ich nicht verzeihen kann.
Er hat das Schreiben nach Hören gelernt. Also hat er drei Jahre lang alles falsch schreiben dürfen und es wurde nicht zensiert und dann wurde alles zensiert. Er Hat die vereinfachte Ausgangsschrift lernen müssen. Auf einem Elternabend habe ich gefragt ob das denn noch sein muss und ich bekam die Antwort von der Lehrerin, sie darf und wird das entscheiden. Er musste schreiben wie alle! Schrift und Form ist auch Kreativität und ein teil der Persönlichkeit. Eine eigene Handschrift ist so wichtig. Warum hat man den Kindern das angetan?
Nun könnte ich meinem Entsetzen über die Schule weiter Ausdruck verleihen, das tue ich nicht. Ich glaube nicht mehr an Lehrer. Aber wir hatten Glück, mein Sohn hatte eine gute Auffassungsgabe, auch heute noch und brauchte und hat auch nie, gelernt. Er hat weder geübt, noch hat er sich je vorbereiten müssen und ist durch die Schule gegangen wie eine Eins. Studieren wollte er dann aber nicht mehr. Das fand ich sehr schade, konnte es aber verstehen.
Denn ich wurde vom Lehrer noch geschlagen, weil ich keine sichere Händigkeit entwickelt hatte und mit beiden Händen schrieb. Er zwang mich mit der rechten Hand zu schreiben. Was zur Folge hatte, dass ich bis heute, rechts und links nur mit Nachdenken unterscheiden kann.
Ich aber liebte Mathe ( mein Sohn auch, sein Großvater war ein Dozent für Mathematik an einer Uni ) und wenn es ein Lehrer geschafft hatte, meine Freude an Inhalten zu wecken, dann war ich auch mit Freude dabei und erinnere und beherrsche es auch heute noch, alles andere verschwand in den Analen der Vergangenheit und die Erinnerung ist zwar da aber nicht mit Freude belegt. Ich lehne unser Schulsystem mittlerweile ab und sage auch, wir Eltern wissen nichts.
Da hab ich anscheinend gefehlt. An 4 Fenster Technik kann ich mich nicht erinnern. Wohl aber an Windows, dass 10 Jahre später raus kam. Über gefühlte 15 Disketten, zum selber installieren. Meisst war dann eine Diskette nicht lesbar auf Sektor XY. Sehr spannende Geschichte. Wir haben noch mit dem Rechenschieber rechnen gelernt. Die Dinger hab ich seit dem nicht mehr gesehen. Dafür hatten wir den Führerschein schon mit 14. Und unsere Mopets sind 65 und manchmal auch schneller gefahren.
Ich hatte tatsächlich gerade Probleme damit und kam auf "zwischen 68 und 75". Aber ich bin beim durchlesen der Frage auch als heutiger Europäer insgeheim davon ausgegangen, dass von den 100 Leuten auch Leute andere Sprachen als Deutsch oder Russisch sprechen.
Daher war die Lösung mit der 4-Felder-Tafel für mich zu eng gefasst, als dass ich sie in Betracht gezogen hätte 😅
Sehe ich auch so ... zwischen 68 und 75
1995 kam ein russischer Schüler nach Deutschland, und in unsere Klasse..er war in Mathe meilenweit vorn
Könnte man diese einfache Aufgabe im Bundestag, zur Auswahl der Politiker, anwenden, hätten wir viel weniger Probleme in ganz Europa
Bin dafür, dass nicht nur Politiker mit solchen Aufgaben getestet werden, ob sie fähig für das Amt sind, sondern dass auch Wähler solche Tests bekommen, um zu Testen, ob sie geeignet sind mit ihrer Stimme zu bestimmen, wer geeignet ist das Land zu führen.
trifft auf Amerika zu...lol
Dieses Viereck kannte ich auch noch nicht, da habe ich auch noch was gelernt.👍
So ging mir das auch. Ich wäre auf die 68 nicht gekommen.
Ich amüsiere micv gerade. Man brauch gar keinen Rechebweg, wenn man nur logisch denken würde/ könnte.😂😂😂
ich komme aus NRW und habe so etwas noch nie gesehen. Finde ich sehr interessant. Ich weiß aber warum es das bei uns nicht gab: Englisch hat in den 70er Jahren so gut wie niemand gesprochen und russisch war ja "auf der anderen Seite" 😂
Das alles ist Sache von Konzentration und Fokus auf die Mathematik!
Mein erster Gedanke, beim Blick auf die Aufgabe (im Thumbnail): "sind genug Rettungsboote vorhanden". Gleichzeitig hatte ich vor Augen, wie im Film Titanic, das Orchester durch den Ballsahl fiel, als das Schiff Schlagseite bekommen hatte.
Genau wie die Aufgabe mit den Zügen, erster Gedanke: "ist die Strecke eingleisig?"
😉😅
Deutsch bitte nicht vernachlässigen! Ballsaal ☝️
@@kerstinkunze3823
Ups, ja natürlich! Ballsaal 😅
War wohl kurz der Meinung, man schreibt es NICHT wie die Saale aber ok.🤭
Jahrgang '68, habe was dazugelernt, Danke dafür, genial einfach mit der Methode! Es wäre schön, wenn die Bildungsvermittlung in D wieder besser werden würde, sehr, sehr wichtig!
Grüße!
Ich finde es bedenklich, dass hier viele Intelligenz immer noch mit mathematisch kognitiver Intelligenz gleichsetzen und als Gegenpol daraus dann Dummheit ableiten, so wie es auch im Videotitel steht. Der Intelligenzbegriff hat einen Paradigmenwechsel durchgemacht und sollte viel weiter gefasst werden. Mathematische Intelligenz ist nur ein Teil davon. Für eine "gesunde" Gesellschaft sind verschiedene Formen von Intelligenz, wie etwa soziale oder emotionale Intelligenz erforderlich. Das sollte auch bei Bildungspolitikern langsam mal ankommen.
Zumal oft vergessen wird, dass auch bei kognitiver Intelligenz verschiedene Begabungen bestehen. Hochintelligente Menschen können Dyslexie oder Dyskalkulie haben. Vielleicht braucht man auf manchen Feldern mehr Unterstützung und Hilfsmittel. Das hat nichts mit mangelnder Intelligenz zu tun.
So ist es! Trotzdem finde ich die mathematische Intelligenz beindruckend, auch wenn sie im Leben, um erfolgreich zu sein, längst nicht hauptsächlich entscheidend ist. Zum Glück!
Ich hab's mit einem linearen Gleichungssystem gelöst.
Symbole:
R: die Anzahl der Leute, die Russisch, aber nicht Deutsch sprechen,
D: die Anzahl derer, die Deutsch, aber nicht Russisch sprechen,
B: die Anzahl derer, die beide Sprachen sprechen.
Dann ergeben sich aus der Aufgabenstellung die Gleichungen
I: D + B = 75
II: R + B = 83
III: D + B + R = 100 - 10 = 90.
Das sind drei Gleichungen mit drei Unbekannten, die kann man dann auflösen, wie man will. Ich habe Gleichungen I und II addiert und dann III davon subtrahiert, dann steht da schon direkt B = 75 + 83 - 90 = 68 ohne weitere Umformungen.
Ich finde so komplett formalisierbare Lösungen immer schöner als solche "mit gesundem Menschenverstand", weil man eventuelle Denkfehler da einfacher findet. Die von dir vorgeführte Vierfeldermethode gefällt mir aus demselben Grunde auch sehr gut.
Ich habe es so im Kopf gelöst:
100-10=90 die entweder russisch oder deutsch sprechen.
Wenn man jetzt z.B. 90 Felder in einer Reihe annimmt und von links 83 mit einer Farbe und von rechts 75 mit einer anderen Farbe kennzeichnet, dann ist die Anzahl der Felder, die mit beiden Farben gekennzeichnet ist 90-(90-83)-(90-75)=68. Also können 68 Personen russisch und deutsch.
Ich auch.
Vielen Dank, dass Sie weiterhin und zunehmend auch solche Thematiken in den Fokus rücken und kein Nlatt vor den Mund nehmen. Ihr Kanal wird auch gesellschaftspoliitisch immer wichtiger.
Ich glaube allerdings, dass diese Aufgabe auch vor 40 Jahren in Westdeutschlland die Schülerinnen und Schüler in der 5. Klasse scheitern hätte lassen. Eventuell hätten in noch früheren Jahrgängen die damals noch vermittelten Kenntnisse in Mengenlehre geholfen,. aber ohne Kenntnisse von Begriffen wie "Ereignis/Gegenereignis" und einer Klärung dessen, was dieselben überhaupt bedeuten sollen, würde man als Schüler auch damals auf Granit gebissen haben.
(100-10)= (75-x) + (83-x) + x --> x=68. Schöne Aufgabe und interessante Lösung!
Bester Kommentar hier. Genauso hab ich's auch gemacht. 👍👍👍
Hab ich auch so gelernt, genau so hab ich es auch gelöst
Oder 10+75+83-100= 68
100-10=90
90-75=15
90-83=7
15+7=22
90-22=68
Hab das so im Kopf ausgerechnet ✌🏻
Wow? Sie sind wirklich Lehrer? Dann ist ja doch noch nicht alles verloren.
1990 sind solche Sachen auch noch in 5. Klassen an bayrischen Gymnasien in Schulaufgaben drangekommen. Bei uns (mathematisch naturwissenschaftliches Gymnasium) war sowas immer als "Knobelaufgabe" - meistens letzte Aufgabe - einer Schulaufgabe integriert. Wenn man sonst keine Fehler hatte konnte man auch ohne diese Aufgabe grade noch ne 1- erreichen. Auch später waren anspruchsvolle Aufgaben - gekennzeichnet durch Punkte neben der Aufgabe, 1 bis 4 schwarze "Knubbel" immer noch Bestandteil der Hausaufgabe und auch von Schulaufgaben.
Ha! 68! Richtig gerechnet! Sogar ohne diese mir neue Vierfeldertafel, nur mit Logik und intuitiv: 100 - 10 = 90. 75 + 83 = 158. 158 - 90 = 68! Dabei war ich als Schüler eher schlecht im Rechnen. Man muss auch etwas ehrgeizig sein.
Hallo Tag Träumer , genauso bin ich auch zum richtigen Ergebnis gekommen , ich war auch keine grosse Leuchte in Mathe , bin aber im Leben sehr gut zu recht gekommen
@@gundaundmanfredmeyer1589 Rechnen ist also nicht lebenswichtig, das vermutete ich schon damals in der Schule. Wir hatten ja in der Schule die sogenannte und längst überholte Mengenlehre. Vielleicht blieb bei mir davon etwas hängen, was mir beim Lösen der Aufgabe hier half. Mengenlehre war Ende der Siebziger- oder Anfang der Achtzigerjahre Avantgarde und umstritten. Geschadet hat es wohl nicht. Mir gefielen die Plastikplättchen.
4 min Vorwort … und dann eine Methode, die ich , DDR , nicht brauchte , um damals die Aufgabe zu lösen 😂😂
Die Allgemeinbildung ist bei Menschen die in der DDR zur Schule gegangen ist definitiv besser als heutige Schulkinder. Aber generell ist das den aktuellen Möglichkeiten der Ablenkung geschuldet und das Internet macht auch lernfaul.
Und manches wurde in der DDR gar nicht unterrichtet. 😉
Sehr schön erläutert. Gut auch der Hinweis auf den Mathe-Unterricht in der DDR.
(Ginge auch über ein Venn-Diagramm, wie das in der DDR üblich war)
Kurze Erklärung zum Venn-Diagramm:
Insgesamt sind es 100 Personen.
Im äußeren Kreis sind 10 Personen, die beider Sprachen nicht mächtig sind.
Bleiben 90 Sprachkundige.
Nehmen wir die 83, die Russisch sprechen, und 75, die Deutsch sprechen, zusammen, kämen wir auf 158.
Da hätten wir also
158 - 90 = 68,
die wir doppelt gerechnet haben, die also in der Schnittmenge liegen.
Typische Aufgabe, die man auch mit dem sogenannten gesunden Menschenverstand lösen kann. Ich finde es manchmal auch gefährlich wenn man für jede Aufgabe immer irgendein Schema braucht. Dann denken die Leute nicht mehr nach und sagen nur: Ich hab kein Schema -> kann ich nicht lösen.
Viele sind froh, wenn wie ein Schema haben, das sie benutzen können. Die Gefährlichkeit dabei kann ich nicht erkennen.
Das, was du als „sogenannten gesunden Menschenverstand“, verwendet auch ein Schema. Vielleicht nicht bewusst, aber ohne irgendeine Vorgehensweise (= Schema...) kann man die Aufgabe nicht lösen.
@@berndkrugefährlich im eigentlichen Sinne ist es sicher nicht. Das Problem ist m.M.n., daß gar nicht erst versucht wird, sich eine Lösung zu erarbeiten. In der realen Welt braucht man Lösungskompetenz. Die bekommt man aber nicht, wenn man ein vorgegebenes Schema verwenden soll, sondern durch eigenes Nachdenken.
Nachdem ich gerade das letzte Kind durch das Schulsystem gebracht habe, und selber auch viel als Trainer mit Kinder arbeite, kann ich sagen, dass es zwei Probleme mit unserem Schulsystem gibt.
1. Die konsequenzlose Erziehung, sowohl zu Hause als auch in der Schule. Die Kinder kommen mit quasi allem durch. Man muss auf die Kinder eingehen, ihre Wünsche und Emotione ernst nehmen, aber ihnen auch klar machen, daß jede Handlung und Entscheidung Konsequenzen hat im Leben.
2. Unser Schulsystem ist vollkommen veraltet,technisch noch im letzten Jahrtausend. Damit kann man kein Kind mehr begeistern. Und damit ist das Interesse der Kinder an Schule in der Regel gleich null.
Elegantes Werkzeug. Ich finde es allerdings gerade in Mathe immer wichtig, dass man versteht, was man da macht und nicht nur auswendig gelernte Werkzeuge anwendet. Wenn man es nicht wirklich verstanden hat kann es leicht passieren dass man sich das falsche Werkzeug heraussucht. Dieser Aspekt kommt mir in der schule häufig zu kurz. "A fool with a tool is still a fool." Ansonsten: Tolles Video und super vorgetragen!
Ich habe auch einfach im Kopf 83+75-90=68 gerechnet... da muss man gar nicht groß was aufmalen.
Kannst DU auch erklären, warum dieser Ansatz richtig ist ?
Nacher ist man immer schlauer...
@@dmutub67 Vermutlich nicht.
Geht aber so in die Richtung P(A) + P(B) - P(A v B) = P(A ^ B).
Kann man wieder gut als Venn Diagramm aufmalen!
@@dmutub67 also, die Differenz zwischen denen, die mindestens eine der beiden Sprachen sprechen und denen, die überhaupt eine dieser Sprachen sprechen ist 68.
Und erklären, warum was, wie ist muss ich zum Glück seit 1984 nicht mehr. Seit dem reicht es, wenn es stimmt.
@@dmutub67 Es sind 100 Leute auf dem Boot.Die 10 die weder deutsch noch russisch sprechen kannst Du vergessen, also sind nur 90 relevant. Russisch 83+75 nur deutsch und davon ziehst du die 90 wieder ab.
Hallo, ich würde es anders rechnen. 100 - 10 = 90 sprechen mindestens D oder R. Dann 90 - 83 = 7 D; 90 -75 = 15 R; 7 + 15 = 22 ; 90 - 22 = 68 Sprechen D und R. Ist das ok oder ist das nur ein Zufall?
Ich wuerde als erstes ueberlegen, wie viele enttweder deutsch oder russisch oder beides sprechen. Das sind 100-10=90. Von diesen 90 sprechen 15 (90-75) kein deutsch, also nur russisch (Sprachenkenntnisse in anderen Spachen als deutsch und russisch lasse ich hier unberuecsichttigt). Von diesen 90 sprechen 7 (90--83) kein russisch, also nur deutsch. Die Zahl der Personen, die sowohl deutschh als auch russisch sprechen ist damit
90-15-7=68 (15 sprechen kein deutsch, 7 kein russisch, der Rest spricht beides, weil von den 90 ja jeder entweder deutsch oder russisch spricht).
ich wuesste nicht, warum ich mir dazu eine Tabelle erstellen sollte.