Tensor Product of Graphs Tutorial [Discrete Mathematics]

Поделиться
HTML-код
  • Опубликовано: 16 дек 2024

Комментарии • 10

  • @VitalSine
    @VitalSine  Год назад

    0:00 Definition
    1:15 Tensor vs Cartesian product
    1:27 Example 1
    3:18 Example 2
    5:55 Example 3
    6:54 Intuition

  • @yusufturhan8367
    @yusufturhan8367 Год назад +1

    very interesting topic and great explanation!

  • @todianmishtaku6249
    @todianmishtaku6249 2 года назад +3

    Lovely explained!

  • @johannes8144
    @johannes8144 3 года назад +3

    Thank you for your video! Nice explanation.

    • @VitalSine
      @VitalSine  3 года назад +1

      You're very welcome 👍

  • @jiaxinwang-w2i
    @jiaxinwang-w2i 4 месяца назад +1

    Is tensor product direct product?

    • @VitalSine
      @VitalSine  4 месяца назад

      Yes. Tensor product is another name for Direct product.

  • @VitalSine
    @VitalSine  4 года назад +2

    Hello everyone. I wanted to share this interesting link on a recently disproved conjecture relating to tensor products: en.wikipedia.org/wiki/Hedetniemi%27s_conjecture👍

  • @rembautimes8808
    @rembautimes8808 3 года назад +4

    My Guess is that the tensor product of 2 disconnected graphs are disconnected . For 2 bipartite graps each vertice in the product set can only connect if they are adjacent in the factor graphs. So since only sets connect to other sets in the factor graph, they can’t connect to the same set in the product graph so it’s bipartite

    • @VitalSine
      @VitalSine  3 года назад +2

      You're correct for both! For the first one, if either factor graph is disconnected, then the vertices with left/right entries in one connected component cannot connect to those with left/right entries in the other connected component, so the disconnected structure kind of carries over to the tensor product. And you're exactly right about the reason for why the tensor product of bipartite graphs is bipartite. 👍