ISOSTÁTICA #69 | CG e Momento de Inércia | Exercício 03

Поделиться
HTML-код
  • Опубликовано: 3 дек 2024

Комментарии • 6

  • @yansteven1654
    @yansteven1654 2 года назад +1

    Questão mt boa e mt bem explicada, parabéns pelo conteúdo

    • @ProfRodolfo
      @ProfRodolfo  2 года назад

      Valeu, Yan. Fico feliz que os vídeos estão sendo úteis.

  • @gatleta
    @gatleta 2 года назад +1

    Excelente 🙌, estou grato.

    • @ProfRodolfo
      @ProfRodolfo  2 года назад

      Valeu, G Atleta... Espero ter ajudado👍. Bons Estudos!

  • @viniciusmarsaro3023
    @viniciusmarsaro3023 8 месяцев назад +1

    Não entendi os denominadores do momento de Inercia

    • @ProfRodolfo
      @ProfRodolfo  8 месяцев назад +1

      Boa noite, Vinícius
      Você se refere ao 12, ao 36 e ao 4, respectivamente em bh³/12, bh³/36 e πR⁴/4 é isso?
      Esse assuntos de centro de gravidade e momento de inércia geralmente são apresentados em dois momentos em um curso de engenharia, aqui em Isostática (Mecânica 1, Mecânica geral) e em uma das disciplinas de Cálculo (o 2 ou 3).
      Nas disciplinas de cálculo, a gente calcula usando integrais, muito muito bom... Para funções com formas quaisquer, não tem o que não seja possível resolver... Mas quando para definir a figura são necessárias várias funções, vários intervalos de integração, ou mesmo mudança de variável aí o bicho pega.
      Na prática, raramente a gente vê uma figura que é a "revolução da função expoente de um polinômio de 3º grau em torno da reta y=x".... As figuras que a gente precisa calcular são composições de figuras simples (triângulos, retângulos, círculos ou parte de círculos) que no caso são o foco da disciplina Isostática.
      A questão desse vídeo é uma questão de figura composta, na qual eu identifiquei que poderia decompô-la como um retângulo (Figura 1) menos um triângulo (Figura 2) menos um círculo (Figura 3). Sabendo o momento de inércia de cada uma delas separadamente podemos calcular o momento de inércia da figura composta utilizando o teorema dos eixos paralelos.
      O centro de gravidade e momento de inércia dessas figuras (retângulo, triângulo e círculo) podem ser calculados usando a metodologia apresentada lá em Cálculo. Nas minhas aulas de Isostática geralmente eu faço a dedução de duas delas. No mais é bom saber de cor algumas delas porque usamos muuuuuuuuuuuito mesmo.
      No caso desse vídeo...
      bh³/12 - É a expressão para cálculo do momento de inércia dos RETÂNGULOS.
      bh³/36 - É a expressão para cálculo do momento de inércia dos TRIÂNGULOS.
      πR⁴/4 - É a expressão para cálculo do momento de inércia dos CÍRCULOS.
      Era isso?
      Esse daqui é o exercício 3, dá uma olhada nos outros se for do interesse.
      ruclips.net/video/BrO1yTYDiMo/видео.html
      ruclips.net/video/6L2hjpViHG8/видео.html
      ruclips.net/video/sYvqj6E4WdQ/видео.html
      Ou ainda nos vídeos em que apresento as teorias do CG e momento de inércia
      ruclips.net/video/VjUqqrpcCHo/видео.html
      ruclips.net/video/HWPv3--yuhc/видео.html
      Bons Estudos!