Complete Statistics, Ancillary Statistics, and Basu's Theorem

Поделиться
HTML-код
  • Опубликовано: 23 ноя 2024

Комментарии • 8

  • @st8k490
    @st8k490 5 дней назад

    great content, keep it up

  • @emiliovillagran8187
    @emiliovillagran8187 Месяц назад +3

    I’ve exam tomorrow and noticed you uploaded the video 20 minutes ago 😂 That’s a signal

  • @jakeaustria5445
    @jakeaustria5445 Месяц назад

    Thank You

  • @MarcoBova
    @MarcoBova 28 дней назад

    really neat video, could you do one on estimators and LME?

    • @statswithbrian
      @statswithbrian  27 дней назад

      If by LME you mean linear mixed-effects models, probably not any time soon, but that's a good idea. I have lots of videos on estimators and their properties though (MLE, MoM, Consistency, Unbiasedness, CRLB etc)

  • @nickmillican22
    @nickmillican22 22 дня назад

    I don't understand the first "not-complete" example. E[X_1 - X_2] = E[X_1] - E[X_2] = mu - mu = 0, no?

    • @statswithbrian
      @statswithbrian  22 дня назад

      Correct - it’s 0. The definition of completeness tells us that if that expected value is zero, then the function must also be 0 everywhere. But X1-X2 is basically never 0.