A Rational Equation from Math Olympiads | Russia

Поделиться
HTML-код
  • Опубликовано: 1 фев 2025

Комментарии • 19

  • @shikharsingh7694
    @shikharsingh7694 5 месяцев назад

    First comment PIN PLEASE

  • @pwmiles56
    @pwmiles56 5 месяцев назад +5

    I like symmetry! In a third method substitute
    x + 2 = u
    1/(u-2) + 1/(u-1) + 1/u + 1/(u+1) + 1/(u+2) = 0
    After some multiplying out
    (u+2)u(u^2-1) + (u+1)u(u^2-4) + (u^2-1)(u^2-4) + (u-1)u(u^2-4) + (u-2)u(u^2-1) = 0
    Grouping the first and fifth and the second and fourth terms
    2u^2(u^2-1) + 2u^2(u^2-4) + (u^2-1)(u^2-4) = 0
    2u^2(2u^2-5) + (u^2-1)(u^2-4) = 0
    5u^4 - 15u^2 + 4 = 0
    and the solution proceeds as Method 1

    • @user-dq6jf9ru9e
      @user-dq6jf9ru9e 5 месяцев назад +2

      Yeah, I solved it the same way. This is the first method we should try when having the symmetry like that))
      By the way the second method in the video uses the same trick with grouping of symmetrical terms but without substitution x + 2 = u though which makes it a way harder...

    • @SyberMath
      @SyberMath  5 месяцев назад +2

      Thanks for sharing!

    • @sarantis40kalaitzis48
      @sarantis40kalaitzis48 5 месяцев назад

      @@SyberMath I solveded the same way substituting x+2=u.

  • @BoringExtrovert
    @BoringExtrovert 5 месяцев назад +1

    The first method wasn’t as bad as as I thought it would be

  • @cosmosapien597
    @cosmosapien597 5 месяцев назад

    Substitute t=x+2,
    Then it becomes
    1/(t-2) + 1/(t-1) + 1/t + 1/(t+1) + 1/(t+2) = 0
    Now proceed the same as the second method, grouping and adding 1st and last terms together, and 2nd and 2nd last terms together. It becomes:-
    2t/(t²-4) + 2t/(t²-1) = 1/t
    → 1/(t²-4) +1/(t²-1) = 1/2t²
    Put u = t² and solve for u.

    • @PeterNguyen-fo5hq
      @PeterNguyen-fo5hq 5 месяцев назад

      2t/(t²-4) + 2t/(t²-1) = -1/t

    • @cosmosapien597
      @cosmosapien597 5 месяцев назад

      @@PeterNguyen-fo5hq oh thanks, silly mistake

  • @yoav613
    @yoav613 5 месяцев назад

    Very nice💥💥💥

  • @scottleung9587
    @scottleung9587 5 месяцев назад

    Cool - I think the second method is definitely better!

  • @phill3986
    @phill3986 5 месяцев назад

    🔥😎👍✌️👍🔥

  • @vladimirkaplun5774
    @vladimirkaplun5774 5 месяцев назад

    Fresh

  • @giuseppemalaguti435
    @giuseppemalaguti435 5 месяцев назад

    (x^2+3x+2+x^2+2x+x^2+x)/x(x+1)(x+2)=(-x-4-x-3)/(x+3)(x+4)..(3x^2+6x+2)(x+3)(x+4)=x(x+1)(x+2)(-2x-7)...(3x^2+6x+2)(x^2+7x+12)=(x^2+x)(-2x^2-11x-14)....3x^4+27x^3+80x^2+86x+24=-2x^4-13x^3-25x^2-14x...5x^4+40x^3+105x^2+100x+24=0...ah

  • @cyruschang1904
    @cyruschang1904 5 месяцев назад

    1/x + 1/(x + 1) + 1/(x + 2) + 1/(x + 3) + 1/(x + 4) = 0
    y = x + 2
    1/(y - 2) + 1/(y - 1) + 1/y + 1/(y + 1) + 1/(y + 2) = 0
    2y/(y^2 - 4) + 2y/(y^2 - 1) + 2y/(y^2) = 0
    2y = 2(x + 2) cannot be zero
    1/(y^2 - 4) + 1/(y^2 - 1) + 1/(y^2) = 0
    z = y^2 - 2
    1/(z - 2) + 1/(z + 1) + 1/(z + 2) = 0
    2z/(z^2 - 4) + 1/(z + 1) = 0
    3z^2 + 2z - 4 = 0
    z = (-1 +/- ✓13)/3
    y^2 = z + 2 = (5 +/- ✓13)/3
    y = ✓[(5 +/- ✓13)/3], - [(5 +/- ✓13)/3]
    x = y - 2 = - 2 + ✓[(5 +/- ✓13)/3], -2 - [(5 +/- ✓13)/3]

  • @Stevenzhang-ze8ki
    @Stevenzhang-ze8ki 4 месяца назад

    阴阳怪气!!!