Everything is possible in math

Поделиться
HTML-код
  • Опубликовано: 7 фев 2025
  • What do you think about this question? If you're reading this ❤️. Have a great day!
    Check out my latest video (Everything is possible in math): • Everything is possible...
    Can You Pass Harvard's Entrance Exam?: • Can You Pass Harvard's...
    Hello My Friend ! Welcome to my channel. I really appreciate it!
    ‪@higher_mathematics‬
    #maths #math

Комментарии • 123

  • @HoSza1
    @HoSza1 6 месяцев назад +17

    Why do you overcomplicate?
    x⁴=-4 ⇒ x²=±2i ⇒ x=±(1+i) for x²=2i and x=±(-1+i) for x²=-2i. And so x=±1±i. Done, good place to stop.

    • @khaledf3977
      @khaledf3977 5 месяцев назад +1

      How did u solved x^2=2i

    • @HoSza1
      @HoSza1 5 месяцев назад +2

      ​@@khaledf3977​ A method for calculating square roots for complex numbers: halve the argument and take the square root of the lenght. for 2i, the arg equals 𝜋/2 and the length is 2, so its square root is a complex number r whose arg is 𝜋/4 and its length is √2. The polar form of r is r = √2(cos(𝜋/4)+isin(𝜋/4)) = √2(√2/2+i√2/2) = 2/2+2i/2 = 1+i. And of course -1-i is also a root of 2i. Checking the validity: (1+i)² = 1+2i-1 = 2i and (-1-i)² = 1+2i-i = 2i.

    • @beauthestdane
      @beauthestdane 17 дней назад

      @@khaledf3977 x^4=-4, so x^2=sqrt(-4)=sqrt(4)*sqrt(-1)=+/-2i.

  • @prashnaprashant4770
    @prashnaprashant4770 6 месяцев назад +14

    After seeing this equation, one could easily say : It will surely have complex solutions. Great work! 👍👍😄😄

    • @kpdywo848
      @kpdywo848 6 месяцев назад +1

      YES : The equation must be expressed in polar form. So X^4 = 4eiπ(2k+1). 4^(1/4) = 2^1/2; les racines sont alors : x(0,1,2,3) = Sqrt(2).e[iπ(2k+1)[/4...What gives in algebraic form for k=0,1,2,3: x0 = 1+i, x1=-1+i, x2= -1-i, x3=1-i. No needs 11 mn 07, in 2 minutes it's done. By the way this demonstrates the computational power of algebra in C

    • @smileorcry7204
      @smileorcry7204 3 месяца назад +1

      Since it has complex solution(answer is iota) so it is indeed complex😅

    • @prashnaprashant4770
      @prashnaprashant4770 3 месяца назад

      that's great, but he did this question in such a great way that a class 9 student can also understand ( as me ). but it was a easy question ,easily solved as well.

  • @higher_mathematics
    @higher_mathematics  6 месяцев назад +14

    Thank you for watching. Much love and respect. Have a great day! What do you think about this question?❤❤❤

  • @jpl569
    @jpl569 6 месяцев назад +10

    If you don’t know about complex numbers, this equation has no real solutions.
    If you know about complex numbers, then you are familiar with Moivre formula, Euler formula (exp iπ = - 1), and the roots of unity…
    So, letting Y = X / √2, the equation becomes Y^4 = -1.
    The Y solutions are the fourth roots of - 1, i.e. exp (iπ / 4 + ikπ / 2) for k = 0, 1, 2 and 3.
    Coming back to X, the solutions are : {1 + i, -1 + i, -1 - i, 1 - i} .
    Thanks for your videos !

    • @pelasgeuspelasgeus4634
      @pelasgeuspelasgeus4634 5 месяцев назад

      @@jpl569 Right. So, since you know complex numbers and don't care about real world, go to your employer and ask him to pay you in imaginary units. Dork.

    • @Pestana02
      @Pestana02 4 месяца назад

      ​@@pelasgeuspelasgeus4634bro really got salty because someone mentioned complex numbers

    • @pelasgeuspelasgeus4634
      @pelasgeuspelasgeus4634 4 месяца назад

      @@Pestana02 You can't do the same if you like. Or explain complex numbers by using marvel characters...

  • @pelasgeuspelasgeus4634
    @pelasgeuspelasgeus4634 6 месяцев назад +42

    That equation has no solution in the real world.

    • @GeoffBarnes-l9k
      @GeoffBarnes-l9k 6 месяцев назад +6

      lol, I see what you did there

    • @mr.d8747
      @mr.d8747 6 месяцев назад +6

      *That's why the complex world exists*

    • @pelasgeuspelasgeus4634
      @pelasgeuspelasgeus4634 6 месяцев назад

      @@mr.d8747 You mean science fiction world where non countable numbers produce countable results. Think about it a bit...

    • @atharvaSafew
      @atharvaSafew 6 месяцев назад +7

      Just imagine the answer

    • @pelasgeuspelasgeus4634
      @pelasgeuspelasgeus4634 6 месяцев назад

      ​@@atharvaSafew😂 Precisely. An imaginary solution that has no tangible, countable, actual depiction in real world. Usable only for youtube videos and Academia papers...

  • @just_another_person_who_li4675
    @just_another_person_who_li4675 6 месяцев назад +6

    x^4 = -4
    add 4 to each side
    x^4 + 4 = 0
    Notice how it’s not a sum of fourths? We’ll use it anyways.
    a = x, b = 4^1/4
    (a^2 + sqrt2(ab) + b^2)(a^2 - sqrt2(ab) + b^2) = 0
    (x^2 + sqrt2((4^1/4)x) + (4^1/4)^2)(x^2 - sqrt2((4^1/4)x) + (4^1/4)^2) = 0
    Simplify the 3rd term in each bracket, and 4^1/4 to sqrt2
    (x^2 + sqrt2(sqrt2(x)) + 2)(x^2 - sqrt2(sqrt2(x)) + 2) = 0
    Multiply the 2nd term
    (x^2 + 2x + 2)(x^2 - 2x + 2) = 0
    Solve for each case
    Case 1:
    (x^2 + 2x + 2) = 0
    Use the quadratic formula
    a = 1, b = 2, c = 2
    D = b^2 - 4ac
    D = 2^2 - 4(1)(2)
    D = 4 - 8
    D = - 4
    x = (-b +- sqrtD)/2a
    Substitute in values
    x = (-2 +- sqrt(-4))/2(1)
    Expand the denominator and sqrt the -4
    x = (-2 +- 2i)/2
    Simplify
    x = -1 +- i
    Case 2:
    (x^2 - 2x + 2) = 0
    Use the quadratic formula
    a = 1, b = -2, c = 2
    D = b^2 - 4ac
    D = (-2)^2 - 4(1)(2)
    D = 4 - 8
    D = - 4
    x = (-b +- sqrtD)/2a
    Substitute in values
    x = (-(-2) +- sqrt(-4))/2(1)
    Expand the denominator, sqrt the -4 and simplify the -(-2)
    x = (2 +- 2i)/2
    Simplify
    x = 1 +- i
    4 complex solutions:
    x = - 1 - i, 1 - i, - 1 + i, 1 + i

  • @kpdywo848
    @kpdywo848 6 месяцев назад +3

    The equation must be expressed in polar form. So X^4 = 4eiπ(2k+1). 4^(1/4) = 2^1/2; les racines sont alors : x(0,1,2,3) = Sqrt(2).e[iπ(2k+1)[/4...What gives in algebraic form for k=0,1,2,3: x0 = 1+i, x1=-1+i, x2= -1-i, x3=1-i. No needs 11 mn 07, in 2 minutes it's done. By the way this demonstrates the computational power of algebra in C

  • @igalbitan5096
    @igalbitan5096 6 месяцев назад +2

    I would have used Euler exponentiation to get to those results (-4 = 4 * e^i*Pi).

    • @kpdywo848
      @kpdywo848 6 месяцев назад +2

      it could be simply
      YES : The equation must be expressed in polar form. So X^4 = 4eiπ(2k+1). 4^(1/4) = 2^1/2; les racines sont alors : x(0,1,2,3) = Sqrt(2).e[iπ(2k+1)[/4...What gives in algebraic form for k=0,1,2,3: x0 = 1+i, x1=-1+i, x2= -1-i, x3=1-i. No needs 11 mn 07, in 2 minutes it's done. By the way this demonstrates the computational power of algebra in C

  • @hippophile
    @hippophile 6 месяцев назад +1

    Such simple equations are most easily understood with an Argand Diagram (on the complex plane). But then I always did like algebraic geometry :).

  • @Sen.say.
    @Sen.say. 6 месяцев назад +3

    I could only imagine such a solution

  • @beauthestdane
    @beauthestdane 17 дней назад

    It was honestly pretty trivial to just solve in my head.
    x^4=-4
    so x^2=+/-2i
    so x=sqrt(+/-2i)
    sqrt(2i)=1+i, -1-i
    sqrt(-2i)=1-i,-1+i

  • @chadbailey3623
    @chadbailey3623 6 месяцев назад

    You are amazing!

  • @dalekloss4682
    @dalekloss4682 6 месяцев назад +3

    lot of work. easier to use compex arg and complex angle.

  • @Mister_Mouse7
    @Mister_Mouse7 5 месяцев назад

    x4=-4
    (x2)2=-4
    (-1).(x2)=√4
    -1.x2=2
    -1=2/x2=>-1/2=1/x2=>sobs -√1/2=1/x
    =>-1/√2=1/x =-√2=x ie
    x=√2i

  • @andreasproteus1465
    @andreasproteus1465 6 месяцев назад +4

    x = √2exp(π(2k+1)i/4) = √2(cos(π(2k+1)/4) + isin(π(2k+1)/4)), where k = 0,1,2,3. i.e. x = ±1 ± i

    • @kpdywo848
      @kpdywo848 6 месяцев назад +1

      it could be simply, I've done exactly that, and solution in 2 minutes

  • @payoo_2674
    @payoo_2674 23 дня назад

    x⁴=-4
    Let x=a+bi {a,b∈R}
    (a+bi)⁴=-4
    a⁴+4a³bi-6a²b²-4ab³i+b⁴=-4+0i
    Comparing the real and imaginary parts of both sides of the equation
    a⁴-6a²b²+b⁴=-4 ①
    and
    4a³b-4ab³=0
    4ab(a²-b²)=0
    4ab(a-b)(a+b)=0 => 4 cases
    case 1: a=0 (rejected: from ① b⁴=-4, but b∈R)
    case 2: b=0 (rejected: from ① a⁴=-4, but a∈R)
    case 3: a-b=0 => a=b =>
    from ①: -4b⁴=-4 => b⁴=1 => b=±⁴√1=±1 (complex roots rejected, b/c b∈R)
    if b=1 ==> a=1 => x₁=1+i
    if b=-1 ==> a=-1 => x₂=-1-i
    case 4: a+b=0 => a=-b =>
    from ①: -4b⁴=-4 => b⁴=1 => b=±⁴√1=±1 (complex roots rejected, b/c b∈R)
    if b=1 ==> a=-1 => x₃=-1+i
    if b=-1 ==> a=1 => x₄=1-i

  • @prollysine
    @prollysine 6 месяцев назад

    pree test , ((-2)^(1/2))^2=? , / 1/2 *2=1 / -> ( -2)^1= - 2 , ((x)^(1/4))^4 = - 4 , -> x= (-4)^(1/4) , partial result , and no complex ...

  • @thundershort997
    @thundershort997 6 месяцев назад

    Assalam o Alaikum,
    at this step when we have this expression
    (x^2+3)-4x^2=0
    we can put square root on B.S
    so,
    x^2+-2x+2 is our Q.E
    and we can directly use this eq
    Jazak Allah khair ❤❤

  • @onkotonkoblu
    @onkotonkoblu 6 месяцев назад +3

    Sigma math 🦅

  • @thunderpokemon2456
    @thunderpokemon2456 6 месяцев назад

    Cool equation

  • @HarshwardhanLande
    @HarshwardhanLande 5 месяцев назад

    X belongs to phi and
    X is equal to fourth root of -4

  • @childrenofkoris
    @childrenofkoris 6 месяцев назад

    i love this

  • @jiangchuYT
    @jiangchuYT 6 месяцев назад

    It's easier to apply the De Moivre's Theorem.

  • @HamagaCalapyron
    @HamagaCalapyron 6 месяцев назад

    This is 4 solutions Complexes

  • @cal18338
    @cal18338 6 месяцев назад

    Just do
    4rt(-4) or sqrt(2i)
    Bam done

  • @IlyouhaStudio
    @IlyouhaStudio 6 месяцев назад +5

    How about ±√(2i) ?

    • @Paul_Schulze
      @Paul_Schulze 6 месяцев назад

      This are only 2 solutions where I would expect 4 ...

    • @keescanalfp5143
      @keescanalfp5143 6 месяцев назад +1

      yeah , think that principally both
      x = ±√(2i) and
      x = ±√(-2i)
      are possible roots .
      however in a so called solution we are just supposed to work away the i and the minus sign from under the root sign .
      suggest you'll get those four
      ±1 ± i ,
      so with arguments
      ¼π, ¾π, 5π/4, 7π/4 .

    • @keescanalfp5143
      @keescanalfp5143 6 месяцев назад

      oh , and with modulus
      |¹²³⁴x| = √2 .

  • @ishanya001
    @ishanya001 6 месяцев назад

    What about x= (2i)^1/2

  • @Nguyễn-j9q
    @Nguyễn-j9q 6 месяцев назад +1

    X = ±√-4

    • @pecareca6735
      @pecareca6735 6 месяцев назад +3

      That solution of yours is wrong.

    • @Nguyễn-j9q
      @Nguyễn-j9q 6 месяцев назад +2

      Prove it wrong then because (√-4)² is -4

    • @mauriziograndi1750
      @mauriziograndi1750 6 месяцев назад +3

      With all respect for your skills if you cannot simplify further than this, then in an exam situation you probably will run out of time for other questions.

    • @just_another_person_who_li4675
      @just_another_person_who_li4675 6 месяцев назад +2

      @@Nguyễn-j9q
      Let’s substitute your answer
      (sqrt(-4))^4 = -4
      rewrite -4 as a power which you rewrite as, a^(exponent/denominator)
      ((-4)^1/2)^4 = -4
      Simplify the left side of the equation, using the (a^m)^n = a^mn rule
      (-4)^((1/2)(4)) = -4
      Simplify the exponent
      (-4)^(4/2) = -4
      Simplify it again
      (-4)^2 = -4
      16 =/= -4
      Using the negative answer will yield the same result since sqrt(x^2) = |x|
      Your error was that you saw the “x^4” as “x^2”.
      Your second error was not simplifying your answer to ±2i

    • @Nguyễn-j9q
      @Nguyễn-j9q 6 месяцев назад +1

      Ok

  • @sushmagovindraodarokar8727
    @sushmagovindraodarokar8727 6 месяцев назад

    I found solution to be √2 please tell me if it's correct

    • @sushmagovindraodarokar8727
      @sushmagovindraodarokar8727 6 месяцев назад

      X=-4^1/4
      Multiplying RHS power by 2/2 gives.
      16^1/8
      Converting it to lowest from gives √2.
      Will anyone tell me if it's correct please

    • @frederickvomjupiter258
      @frederickvomjupiter258 6 месяцев назад

      @@sushmagovindraodarokar8727 If you do ^4 with any real number you will always get a positive result. You need a complex number to get the negative result "-4" when doing ^4 . You are right, that √2 is the magnitude of the solution, but it has a real and a compex part.

  • @ayushjoshi1685
    @ayushjoshi1685 Месяц назад

    Why x is not √(2i) ???

  • @payoo_2674
    @payoo_2674 23 дня назад

    x⁴=-4
    x⁴+4=0
    (x²)²-(2i)²=0
    (x²-2i)(x²+2i)=0
    (x²-(√2√i)²)(x²-(√2i√i)²)=0 but √i=1/√2+i/√2 (principal root)
    (x-√2(1/√2+i/√2))(x+√2(1/√2+i/√2))(x-√2i(1/√2+i/√2))(x+√2i(1/√2+i/√2))=0
    (x-1-i)(x+1+i)(x+1-i)(x-1+i)=0
    so
    x₁=1+i
    x₂=-1-i
    x₃=-1+i
    x₄=1-i

  • @payoo_2674
    @payoo_2674 23 дня назад

    x^4 = -4
    x^4 = 4∙(-1)
    x^4 = 4∙e^((1+2k)πi) k∈Z
    x^4 = 4∙e^((1+2k)πi) / ^(1/4)
    x = √2∙e^((1+2k)πi/4)
    for k=0: x₁ = √2∙e^(πi/4) = √2∙(cos(π/4)+i∙sin(π/4)) = √2∙(1/√2+i/√2) = 1+i
    for k=1: x₂ = √2∙e^(3πi/4) = √2∙(cos(3π/4)+i∙sin(3π/4)) = √2∙(-1/√2+i/√2) = -1+i
    for k=2: x₃ = √2∙e^(5πi/4) = √2∙(cos(5π/4)+i∙sin(5π/4)) = √2∙(-1/√2-i/√2) = -1-i
    for k=3: x₄ = √2∙e^(7πi/4) = √2∙(cos(7π/4)+i∙sin(7π/4)) = √2∙(1/√2-i/√2) = 1-i

  • @DragosStan1956
    @DragosStan1956 6 месяцев назад +2

    You spent 11’ and several page scrolls for something really elementary. Just express -1 in polar form, for k = 0…3, probably you’ve heard about Euler identity…

    • @robertlezama1958
      @robertlezama1958 6 месяцев назад +5

      Is the rudeness necessary? This is a community for math enthusiasts, please don't contaminate the space with hubris and discourage sharing. Some of us are still learning other methods and your manner is distracting from your math skills. You could also just leave the channel.

  • @aryandwivedi5168
    @aryandwivedi5168 6 месяцев назад

    Maths taught me everything has a solution.

  • @jurajhprobyt2107
    @jurajhprobyt2107 6 месяцев назад

    Trol me why you are not using comp and programming? You can learn how to spend your life tíme better.

  • @KushalChaki
    @KushalChaki 6 месяцев назад +1

    Scam

  • @mariadelgado4393
    @mariadelgado4393 6 месяцев назад

    I will go back to study identities. We do not divide by zero and your fast explanation was not clear. Bye!

  • @pnachtwey
    @pnachtwey 6 месяцев назад +1

    This is simple and obvious. Think of rotating/ multiplying vectors. It is a matter of how you look at the problem. The obvious thingis that the magnitude must be the 4th root of 4. No problem The next thing is to divide 180 deg by 45 and get 45 degr

    • @pelasgeuspelasgeus4634
      @pelasgeuspelasgeus4634 5 месяцев назад

      Really? So, having in mind we live in a 3d world with 3 real axes, can you describe where is the location of imaginary axis?

  • @rubenmeyerrbn
    @rubenmeyerrbn 6 месяцев назад

    1,414213562373095i ???