Can you calculate area of the Yellow Circle? | (Rectangle) |

Поделиться
HTML-код
  • Опубликовано: 28 дек 2024

Комментарии • 49

  • @jamestalbott4499
    @jamestalbott4499 День назад +5

    Thank you!

    • @PreMath
      @PreMath  День назад +1

      You are very welcome!
      Thanks for the feedback ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 День назад +23

    There is no reason to have points C, O and B on the same line, this should be one of the initial hypothesis of this problem if you want your proof is true.

    • @phungpham1725
      @phungpham1725 День назад +4

      Premath just said that the 3 points are collinear😊
      It is a given fact.

    • @marcgriselhubert3915
      @marcgriselhubert3915 День назад +4

      @@phungpham1725 Yes I heard that at a moment, but not in the initial hypothesis.

    • @phungpham1725
      @phungpham1725 День назад

      @@marcgriselhubert3915: Premath said: “ and furthermore these points B, O and C are collinear as well”.😊

    • @mauriciosahady
      @mauriciosahady День назад

      @@marcgriselhubert3915 he said that at 42"

    • @cyruschang1904
      @cyruschang1904 День назад +4

      Actually, the green rectangle is not needed. It is there to confuse us. The question can be rephrased as following:
      You draw a vertical diameter CB, then a horizontal tangent line on the bottom of the circle. Finally you draw a red line from C to A, such that its length is 25, 16 inside the circle and 9 outside. What is the area of the circle?

  • @petersteiner9820
    @petersteiner9820 15 часов назад +1

    Nice!
    Triangle BDC is a Thales triangle, so angle BDC is a rightangle => BD*BD+16*16=2r*2r.
    ABD is a righttriangle so AB*AB=BD*BD+9*9
    ABC is a righttriangle so 25*25=2r*2r+AB*AB
    Therefore BD=12, and r=10 => Area Pi*r*r=100*Pi

  • @Aligakore
    @Aligakore День назад +6

    Nice 👍 I was a bit confused because the miniature did not show that COB are colinear.

    • @mohammedmohiuddin615
      @mohammedmohiuddin615 День назад +1

      Why is COB colinear, which thoeram

    • @Aligakore
      @Aligakore День назад +2

      @ I think this is part of the initial « given » data otherwise I don’t know why.

  • @marioalb9726
    @marioalb9726 День назад +3

    Tangent Secant theorem:
    a² = 9*(9+16) ---> a² = 225cm²
    Pytagorean theorem:
    (2R)² = c² - a²= (9+16)² - 225
    R = 10 cm
    Area of yellow circle:
    A = πR² = 100π cm² ( Solved √)

  • @santiagoarosam430
    @santiagoarosam430 День назад +4

    9*(9+16)=AB²=225→ AB=15→ (2r)²=(9+16)²-15²→ r²=100→ Área círculo =100π u².
    Gracias y saludos.

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l День назад

    Thanks for sharing sir❤❤

  • @marioalb9726
    @marioalb9726 День назад +2

    c = chord BD
    Similarity of triangles:
    c/9 = 16/c --> c²= 144cm²
    Pytagorean theorem:
    (2R)² = 16² + c² --> R=10cm
    Area of yellow circle :
    A = πR² = 100π cm² ( Solved √ )

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 День назад

    That’s very nice
    Thanks Sir
    Thanks PreMath
    ❤❤❤❤❤

  • @markjones6314
    @markjones6314 День назад +4

    Would it not have been easier to say that the total hypotenuse length is 25. Then from similar triangle theory it's a scaled (5*) 3:4:5 triangle making the other lengths 15 and 20. Thus the radius is 10 and then it's just πr^2.

    • @sgarstin
      @sgarstin День назад +3

      Actually no - just because the hypotenuse is 25, it doesn't mean that the triangle must be 3:4:5

  • @zawatsky
    @zawatsky День назад +2

    Подходит пифагорова тройка 7;24;25 и, следовательно, R=12. Вот только гипотенуза 7 никак не может быть меньше малого катета 9. Ищем дальше. ▲ABD й очень похож на утроенный Египет - (3;4;5)×3=(9;12;15). В этом случае хорда BD разбивает его на два подобных. Если ▲BCD тоже египетский, тогда DB=12, а CB=20, т. е. R=10. Проверим гипотезу. Если ▲ABD действительно Египет, тогда АВ=15. 15;20;25 - это пятикратный Египет, (3;4;5)×5. Значит догадка верна. Тогда искомая площадь будет 100π.

  • @leetucker9938
    @leetucker9938 День назад

    wow

  • @Rudepropre
    @Rudepropre День назад +2

    Most of these can be solved with similarity 😢

  • @AbdulJaleel-rd5ul
    @AbdulJaleel-rd5ul День назад

    How can we assume BOC is collinear?

  • @alexundre8745
    @alexundre8745 День назад

    Bom dia Mestre
    Muitíssimo obrigado pelos ensinamentos
    Deus Lhe Abençoe

  • @giuseppemalaguti435
    @giuseppemalaguti435 День назад

    25cosα=2r...cosα=(8/r)...r=10

  • @tapankumar1500
    @tapankumar1500 3 часа назад

    How B-O-C is collinear.Is it given?No need to give the rectangle there.If given, then how to find the sides of rectangle may be the curious question.

  • @sergioaiex3966
    @sergioaiex3966 День назад +2

    Solution:
    Tangent Secant Theorem
    AB² = AD × AC ... ¹
    AD = 9
    AC = 9 + 16 = 25
    Substituting in ¹
    AB² = 9 × 25
    AB² = 225
    AB = 15
    B is the tangency point, so AB is the tangent line and C, O and B are collinear.
    Therefore we have a right triangle ABC, such that angle B is 90° and COB is the diameter, like that, let's applying the Pythagorean Theorem
    AB² + BC² = AC²
    (15)² + (2r)² = (25)²
    225 + 4r² = 625
    4r² = 625 - 225
    4r² = 400
    r² = 100
    r = 10
    Final Step
    Yellow Circle Area = π r²
    Yellow Circle Area = π (10)²
    Yellow Circle Area = 100 π Square Units ✅
    Yellow Circle Area ≈ 314,1592 Square Units ✅

  • @alexniklas8777
    @alexniklas8777 День назад

    Triangles ABC and BCD are Egyptian, so from any given triangle:
    2r= 20; r= 10.
    Thanks sir😊

  • @sebastianki-t2m
    @sebastianki-t2m День назад

    Easier solution:
    cos angle(ACB) = 2*r / 9+16 = 16/(2*r)
    4*r² = 16*25 = 400
    r² = 100
    r = 10
    A = pi*r² = pi*10 = 314,16 unit²

  • @jannyboe9365
    @jannyboe9365 День назад

    Its a 3-4-5 ratio to the sides. When the hypotenuse is 25 the rest is easy to find.

  • @souzasilva5471
    @souzasilva5471 День назад

    Qual a necessidade do retângulo verde?

  • @anyelo2026
    @anyelo2026 22 часа назад

    You could solve your problem by only applying Euclid's First Theorem to the right triangle ABC ( note that BD is perpendicular to AC in fact the triangle BDC is inscribed in a semicircle ).
    4r² = BC² = AC⋅DC = 25⋅16 = 400
    Consequently, the area of the yellow circle is 100π.

  • @SyamaSundarNayak-p6e
    @SyamaSundarNayak-p6e 4 часа назад

    No need to find out value of r here because area of circle is pai r^

  • @adgf1x
    @adgf1x День назад

    100.pai when pai=22/7

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq День назад

    Sol is too short
    Pythagorean triplet
    (3, 4,5)
    Hypotenuse is 16+9=25
    We get another triplet multiplying by 5
    (15 , 20,25)
    Hence 2r =20
    >r=10
    Area = 100π sq units

  • @MrPaulc222
    @MrPaulc222 День назад

    It feels like there is a flaw in the diagram and it possibly confused me.
    If r = 10, surely two-tangent theorem would give the height of the rectangle as 10 due to the lower-right vertex being equidistant from the two tangents? However, the rectangle's diagonal is shown as 9 when it should be >10. The alternative would be that the lower-right vertex is not making a right angle with the tangent line.
    Ah well, it is Christmas LOL.

    • @unknownidentity2846
      @unknownidentity2846 День назад +1

      The right side of the rectangle is not a tangent to the circle.

    • @MrPaulc222
      @MrPaulc222 День назад +1

      @@unknownidentity2846 Too many Christmas festivities here, I think :)

  • @wasimahmad-t6c
    @wasimahmad-t6c День назад

    368.08

  • @mahmoudmohammed1986
    @mahmoudmohammed1986 День назад

    100pi

  • @rifatshan5362
    @rifatshan5362 2 дня назад

    😄😄😄

  • @phungpham1725
    @phungpham1725 День назад

    Alternative solution:
    BD is the height from B to the hypotenuse AC so,
    SqBD= ADxDC= 9x16
    -> BD= 12=3x4
    Focus on the triangle BDC,
    CD = 16=4x4->BC=5x4=20 ( 3-4-5 triples)
    Area of the yellow circle= pi x sq BC/4 =100 pi sq units😅😅😅

  • @unknownidentity2846
    @unknownidentity2846 День назад

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let E be the bottom right corner of the green rectangle, A be the center of the coordinate system and B on the x-axis. With r being the radius of the circle we obtain the fo
    llowing coordinates:
    A: ( 0 ; 0 )
    B: ( xB ; 0 )
    C: ( xB ; 2r )
    D: ( xD ; yD )
    E: ( xD ; 0 )
    O: ( xB ; r )
    From the known length of the chord CD we can conclude:
    (xC − xD)² + (yC − yD)² = CD²
    (xB − xD)² + (2r − yD)² = 16²
    (xB − xD)² + (2r − yD)² = 256
    Since D is located on the circle, we also can conclude:
    (xO − xD)² + (yO − yD)² = r²
    (xB − xD)² + (r − yD)² = r²
    The right triangles ADE and ABC are obviously similar. Therefore we obtain:
    BC/AC = DE/AD
    (yC − yB)/AC = (yD − yE)/AD
    (yC − yB)/(AD + CD) = (yD − yE)/AD
    (2r − 0)/(9 + 16)= (yD − 0)/9
    2r/25 = yD/9
    ⇒ yD = 18r/25
    (xB − xD)² + (2r − yD)² = 256
    (xB − xD)² + (r − yD)² = r²
    (2r − yD)² − (r − yD)² = 256 − r²
    4r² − 4*yD*r + yD² − (r² − 2*yD*r + yD²) = 256 − r²
    4r² − 4*yD*r + yD² − r² + 2*yD*r − yD² = 256 − r²
    4r² − 2*yD*r = 256
    r² − yD*r/2 = 64
    r² − (18r/25)*r/2 = 64
    r² − 9r²/25 = 64
    25r² − 9r² = 64*25
    16r² = 64*25
    r² = 4*25 = 100
    ⇒ r = √100 = 10
    Now we are able to calculate the area of the yellow circle:
    A(circle) = πr² = π*10² = 100π
    Best regards from Germany

  • @raya.pawley3563
    @raya.pawley3563 День назад

    Thank you!