Can you find area of the Purple shaded region? | (Rectangle) |

Поделиться
HTML-код
  • Опубликовано: 15 янв 2025

Комментарии • 108

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 18 дней назад

    Thanks for sharing Sir ❤❤❤

    • @sukumaranpm9192
      @sukumaranpm9192 17 дней назад

      any body please check when a=3, b=4............ANSWER FOR PURPLED AREA = 8X4 - 3X4X3/2=14

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @dariosilva85
    @dariosilva85 18 дней назад +10

    I got the purple area to be (b^3/2a). Which together with your answer implies that b = a*sqrt(3). Which implies that the triangles must be 30-60-90 triangles for this set-up to be possible.

    • @quigonkenny
      @quigonkenny 18 дней назад +2

      Yep, you can see that G is the midpoint of AC, since FGCB is made up of two congruent triangles, each of area ab/2, meaning GC must be length b and AC is 2b. ∆ADC is thus a 30-60-90. By extension, all the other triangles in the diagram are 30-60-90 as well.

    • @malenfant21m
      @malenfant21m 17 дней назад

      You can assume 30-60-90 triangles in so many puzzles as a shortcut.

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @sukumaranpm9192
      @sukumaranpm9192 15 дней назад

      Rectangle ABCD area is side ABxside BC... AB= AF+FB= √a2+b2 +b.... &BC=b..... Not 3ab/2

    • @MarieAnne.
      @MarieAnne. 14 дней назад

      @@sukumaranpm9192
      In right △AQF, we get AF = √(a²+b²)
      Using similar triangles ABC and FQA, we get (AF+a)/b = b/a → AF = (b²−a²)/a
      Solving both equations, we get b² = 3a²
      AF = √(a²+b²) = √(a²+3a²) = 2a OR AF = (b²−a²)/a = (3a²−a²)/a = 2a
      Purple area = Area(AFED) − Area(AFQ)
      = (AF × FE) − (1/2 × FG × AG)
      = (2a × b) − (1/2 × a × b)
      = 3ab/2

  • @Geometricat38
    @Geometricat38 18 дней назад +3

    You can also express the answer in terms of a or b alone, since b = a.sqrt(3):
    Area = (3a^2.sqrt(3))/2. If you want to be even more picky, you could write: (3^(3/2).a^2)/2.
    Area = (b^2.sqrt(3))/2
    The answer can also be expressed as follows:
    Area = b^3/ (2a)
    Substituting b^2 = 3a^2, one arrives at Premath's answer.
    Cheers!

    • @scottdort7197
      @scottdort7197 18 дней назад

      That's what I got. Pre-math's conclusion was in complete in my opinion. b = a * sqrt3. Therefore the area is A = a^2*3/2*sqrt3.

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @davidteo7421
    @davidteo7421 19 дней назад +3

    Final: S=3ab/2 and b^2=3a^2

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @josehidalgo7268
    @josehidalgo7268 17 дней назад +2

    Según el enunciado el área púrpura es igual área rectángulo AFED menos el área del triangulo AFG. SI a=3 y b=4 el área saldría 14 unidades cuadradas y utilizando la respuesta 3ab/2 saldría 18 unidades cuadradas.

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @MarieAnne.
      @MarieAnne. 14 дней назад

      It's not possible to have a = 3 and b = 4.
      Let AF = c. Then by Pythagorean Theorem, c² = a² + b²
      But by similar triangles ABC and FQA, (c+a)/b = b/a → c = (b²−a²)/a
      Substituting this value of c into first equation, then solving for b, we get b² = 3a² → b = a√3
      c = (b²−a²)/a = (3a²−a²)/a = 2a OR c² = a² + b² = a² + 3a² = 4a² → c = 2a
      So if a = 3 then b = 3√3 and AF = √(a²+b²) = √(9+27) = 6
      Purple Area = Area(AFED) − Area(AFG) = 6*3√3 − 3*3√3/2 = 27√3/2
      and 3ab/2 = 3(3)(3√3)/2 = 27√3/2

  • @BorisTruh
    @BorisTruh 18 дней назад +3

    AF^2=a^2+b^2, S(ACD)=0,5*b*{sqr(a^2+b^2)+a}

    • @MatrixTerraPlana
      @MatrixTerraPlana 17 дней назад

      I found the same result

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @cyruschang1904
    @cyruschang1904 18 дней назад +1

    Purple area = rectangle ADEF - half of the green rectangle = half of the rectangle ABCD
    b√(a^2 + b^2) - ab/2 = b(a + √(a^2 + b^2))/2
    Let √(a^2 + b^2) = L
    bL - ab/2 = b(a + L)/2
    ab = bL/2
    L = 2a
    Purple area = b(2a) - ab/2 = 3ab/2

    • @PreMath
      @PreMath  15 дней назад +1

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @cyruschang1904
      @cyruschang1904 15 дней назад

      @ Thank you. May the New Year bring you and your love ones happiness and success.

  • @jamestalbott4499
    @jamestalbott4499 18 дней назад +1

    Thank you!

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @uwelinzbauer3973
    @uwelinzbauer3973 18 дней назад +2

    I recognized, that AF=FC, and that AC=2b.
    Hence AC/BC=2b/b=2.
    So we have the triangles to be special case 30,60,90 triangles.
    Asked area = 1.5*a*b.
    Thanks for sharing this interesting geometric puzzle 👍

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @santiagoarosam430
    @santiagoarosam430 19 дней назад +1

    FC=FA---> ABC=3ab/2---> ABCD=3ab---> AFED=2ab---> AGFED=2ab-(ab/2) =3ab/2.
    Gracias y saludos.

    • @AmirgabYT2185
      @AmirgabYT2185 19 дней назад +1

      Why ABC=3ab/2

    • @santiagoarosam430
      @santiagoarosam430 18 дней назад +2

      ABC=FGA+FGC+FBC=3ab/2.
      Un saludo

    • @PreMath
      @PreMath  15 дней назад +1

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @KenW-kb4uk
    @KenW-kb4uk 18 дней назад +2

    There is some inconsistency evident here.

    • @geraldgiannotti8364
      @geraldgiannotti8364 18 дней назад +1

      Yes. The PreMath answer of 3ab/2 ONLY applies if the triangles are 30-60-90 right triangles. The area formula of A =(0.5)b(a + sqrt(a^2+b^2)) works for all values of a and b.

    • @MarieAnne.
      @MarieAnne. 14 дней назад

      @@geraldgiannotti8364 No inconsistencies at all. Every step was correct and gave an answer of 3ab/2.
      You say this ONLY applies if triangles are 30-60-90 triangles. Well, this should tell you that triangles can only be 30-60-90 triangles. And we can prove it.
      By Pythagorean theorem, *AF = √(a²+b²)*
      By similar triangles ABC and FQA, (AF+a)/b = b/a → *AF = (b²−a²)/a*
      Substituting this value of AF into first equation, then solving for b, we get b² = 3a² → b = a√3
      AF = √(a²+b²) = √(a²+3b²) = *2a* OR AF = (b²−a²)/a = (3a²−a²)/a = *2a*
      So △AQF has sides AQ = a, QF = b = a√3, AF = 2a, so it is indeed a 30-60-90 triangle
      Of course, we could have used the fact that a correctly obtained answer of 3ab/2 can only occur when we have 30-60-90 triangles to correctly deduce that these triangles are indeed 30-60-90 triangles.

  • @alexundre8745
    @alexundre8745 18 дней назад +1

    Bom dia Mestre
    Forte Abraço aqui do Rio de Janeiro

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @imetroangola17
    @imetroangola17 18 дней назад +1

    *Solução:*
    Por Pitágoras no ∆AQF:
    AF² = a² + b² → AF = (a² + b²)½
    A área [AFED] = BC × AF
    *[AFED] = b(a² + b²)½*
    A área do triângulo [AFG] = ab/2
    A área purple shaded é:
    [AFED] - [AFG] =
    = *_b[(a² + b²)½ - a/2]_*

    • @imetroangola17
      @imetroangola17 18 дней назад +1

      Caso queira brincar mais nas equações, o professor provou que a área sombreada roxa é 3ab/2. Daí,
      b [(a² + b²)½ - a/2] = 3ab/2
      (a² + b²)½ - a/2 = 3a/2
      (a² + b²)½ = 3a/2 + a/2 = 2a
      a² + b² = 4a² → 3a² = b² → b=a√3. Portanto, a área sombreada roxa pode ser dada por :
      3ab/2 = *3√3a²/2.*

    • @PreMath
      @PreMath  15 дней назад +1

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @imetroangola17
      @imetroangola17 15 дней назад

      @@PreMath Feliz ano novo! O Senhor Jesus Cristo te abençoe muito!

  • @MarieAnne.
    @MarieAnne. 14 дней назад

    ∠QFA = ∠GAF (alternate interior angles formed by parallel lines QF and AG and transversal AF)
    Therefore △ABC ~ △FQA
    AB/BC = FQ/QA
    (AF+a)/b = b/a
    AF = (b²−a²)/a
    Since AF is diagonal of rectangle AGFQ, we get:
    AF = √(a²+b²)
    (b²−a²)/a = √(a²+b²)
    (b^4 − 2a²b² + a^4)/a² = a² + b²
    b^4 − 2a²b² + a^4 = a^4 + a²b²
    b^4 − 3a²b² = 0
    b² (b² − 3a²) = 0
    Since a, b > 0, then
    b² = 3a² → b = a√3
    AF = (b²−a²)/a = (3a²−a²)/a = 2a
    *Purple shaded area*
    = Area(ADEF) − Area(AFG)
    = (AF × FE) − (1/2 × FG × AG)
    = (2a × b) − (1/2 × a × b)
    *= 3ab/2*

  • @nenetstree914
    @nenetstree914 18 дней назад +4

    b*[(a^2+b^2)]^(0.5)-(ab/2) ???

    • @thewolfdoctor761
      @thewolfdoctor761 18 дней назад +3

      That's what I got, so does this equal 3ab/2 ?

    • @AdemolaAderibigbe-j8s
      @AdemolaAderibigbe-j8s 18 дней назад +1

      @@thewolfdoctor761 Yes it does. The area of triangle ADC is (0.5)b(a + sqrt(a^2+b^2)) and that is the same area as the stated expression i.e., b*[(a^2+b^2)]^(0.5)-(ab/2). If you equate these two expressions, you end up with b*sqrt(a^2 + b^2) = 2ab. If you substitute that in the stated expression, you get the area of the purple shaded area as 3ab/2.

    • @geraldgiannotti8364
      @geraldgiannotti8364 18 дней назад

      The above answer is correct, and is the General solution for any value of a or b. The PreMath answer of 3ab/2 ONLY applies if the triangles are special 30-60-90 right triangles.

    • @AdemolaAderibigbe-j8s
      @AdemolaAderibigbe-j8s 18 дней назад

      @@geraldgiannotti8364 Can you come up with any set-up that has "a" and "b" values for which all the requirements of the problem are met and for which b*[(a^2+b^2)]^(0.5)-(ab/2) is a solution and 3ab/2 is not a solution?

    • @geraldgiannotti8364
      @geraldgiannotti8364 18 дней назад +1

      @@AdemolaAderibigbe-j8s Yes. The area formula of A =(0.5)b(a + sqrt(a^2+b^2)) works for all values of a and b. The solution of 3ab/2 is only obtained when b=sqrt(3)*a. This constraint of b/a = sqrt(3) makes all the triangles 30-60-90 right triangles

  • @quigonkenny
    @quigonkenny 18 дней назад +1

    Draw FC. As FG = BF = a, ∠CBF = ∠FGC = 90°, and FC is common, then ∆FGC and ∆CBF are congruent triangles.
    As GC = CB = b and AG = FQ = b, then AC = 2b. As ∠BAC = ∠GAF and ∠AGF = ∠CBA = 90°, then ∆AGF and ∆CBA are similar triangles.
    FA/GF = AC/CB
    FA/a = 2b/b = 2
    FA = 2a
    The purple shaded area is equal to the area of the rectangle ADEF minus the area of triangle ∆AGF.
    Purple shaded area:
    A = lw - bh/2
    A = FA(AD) - AG(GF)/2
    A = 2a(b) - b(a)/2
    A = 2ab - ab/2
    [ A = 3ab/2 sq units ]

    • @sukumaranpm9192
      @sukumaranpm9192 17 дней назад

      NOT CORRECT........CHECK WHEN a=3,b=4 then bigger rectangle is (5+3),4 so answer is 14

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @daviddowdell5025
    @daviddowdell5025 18 дней назад

    This is a very good problem to test your ability to stick only to the information provided. Triangle AFQ is not necessarily a 30-60-90 triangle and could be anything. Quadrilateral AGFQ is not a rectangle in general. Any solutions that assume that AGFQ is a rectangle will just be valid for the special case of AFQ being a 30-60-90 triangle, but not correct in general. I get the purple area to be in general 0.75*b*sqrt(a^2+b^2) and not an invariant.

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @MarieAnne.
      @MarieAnne. 14 дней назад

      First 14 seconds of video (when stating the problem)
      _"... we have got this big rectangle ABCD along with these two identical green _*_rectangles_*_ "_

  • @左近允庸孝
    @左近允庸孝 15 дней назад

    aとbの条件はb=a×sqrt(3)のみである。三角形の条件は30-60-90のみである。

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @brettgbarnes
    @brettgbarnes 17 дней назад

    Purple Area = AD·AF - (1/2)·FG·AG
    Purple Area = AD·√(FG² + AG²) - (1/2)·FG·AG
    Purple Area = b·√(a² + b²) - (1/2)·a·b

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @zawatsky
    @zawatsky 18 дней назад

    ▲EPC переносим в равный ему ▲GFP. Видим, что получилась фигура, составленная из прямоугольника и дельтоида с равной площадью (составленные фактически каждый из пары треугольников-половинок), а лиловая площадь S(ACD)=S(АВСВ)/2, обозначим просто как S. Общая площадь 2ab. Видим, что 3 из 4 этих треугольников занимают вторую половину площади большого, равную искомой, т. е. S=¾*2ab=3ab/2.

    • @PreMath
      @PreMath  15 дней назад +1

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @sergioaiex3966
    @sergioaiex3966 18 дней назад +1

    Solution:
    Triangle FGP is congruent to Triangle CEP
    Therefore:
    GP = EP
    FG = CE
    FP = CP
    Like that, we conclude that Purple Area is half of Rectangle ABCD Area
    Purple Area = ½ Rectangle ABCD Area ... ¹
    The Triangles AGF and CEP are similar, so we are going to use proportions
    EP/CE = FG/AG
    EP/a = a/b
    EP = a²/b
    Now, applying the Pythagorean Theorem in Triangle CEP
    CE² + EP² = CP²
    But CP = FP and FP = EF - EP
    CE² + EP² = FP²
    CE² + EP² = (EF - EP)²
    CE² + EP² = EF² - 2 EF . EP + EP²
    CE² = EF² - 2 EF . EP
    a² = b² - 2 . b . a²/b
    a² = b² - 2a²
    3a² = b²
    b² = 3a²
    b = a√3
    AG² + FG² = AF²
    b² + a² = AF²
    AF² = (a√3)² + a²
    AF² = 3a² + a²
    AF² = 4a²
    AF = 2a
    AB = AF + BF
    AB = 2a + a
    AB = 3a
    Substituting in ¹
    Purple Area = ½ length × width
    Purple Area = ½ AB × BC
    Purple Area = ½ 3a × b
    Purple Area = 3ab/2 Square Units ✅

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @MegaSuperEnrique
    @MegaSuperEnrique 19 дней назад

    So we could continue the math: if purple area = 3ab/2, then dimensions of rectangle are b and 3a, so AF=2a. Then with the triangle, sides of a and b, hypotenuse of 2a, only works if b=a√3, which means it must be a 30-60-90 triangle.

    • @marcgriselhubert3915
      @marcgriselhubert3915 19 дней назад

      You are right, there are lots of 30° and 60° angles in the given drawing.

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @arizonarunner1953
    @arizonarunner1953 18 дней назад

    I believe the triangles are 30°, 60°, 90°. Therefor, the solution can be Area = (√(3)/2)*b².

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @ioannistzimis4252
    @ioannistzimis4252 16 дней назад

    AF=c
    P(purple)=bc-ab/2=b(c-a/2)
    Also
    P=ADEP+X=ADC=b(c+a)/2
    So
    b(c-a/2)=b(c+a)/2
    c-a/2=(c+a)/2
    2c-a=c+a
    c=2a
    P=(c+a)b/2=3ab/2

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @marcgriselhubert3915
    @marcgriselhubert3915 19 дней назад

    AB = AF + FB = sqrt(a^2 + b^2) + a, so the big rectangle area is (sqrt(a^2 + b^2) + a).b and the purple shaded area is ((sqrt(a^2 + b^2) + a).b - (3/2).a.b
    This result is less "nice" than the result you found but it is immediate to obtain.
    Now let's see why these results are really the same: (sqrt(a^2 + b^2) + a).b -(3/2).a.b = (3/2).a.b is equivalent to sqrt(a^2 + b^2) + a = 3.a
    or sqrt(a^2 + b^2) = 2.a or a^2 + b^2 = 4.a^2 or b^2 = 3.a^2 or b = sqrt(3).a This is the condition other persons already found. The initial drawing must
    verify b = sqrt(3).a to be constructed. For example t = angleFCB must be equal to 30° (tan(t) = a/b = sqrt(3)/3).

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @adamoksiuta4715
    @adamoksiuta4715 18 дней назад

    When you knew that purple area is 1/2 of area of rectangle ABCD, you can calculate the area of the rectangle ABCD. How? AB is equal AF + FB. Lenght of FB is equal a, and lenght of AF you can calculate from right triangle AQF. When you use of Pythagorean theroem lenght of AF is equal sqrt of (a^2 + b^2). So lenght of AB is equal [sqrt (a^2 + b^2) + a]. When you multiply it by 1/2 of b you will have an area of purple figure.

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @harikatragadda
    @harikatragadda 19 дней назад

    ∆AQF is Similar to ∆ADC. Hence [∆ADC]=(b/a)² *[∆AQF]=b³/2a

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @phungpham1725
    @phungpham1725 18 дней назад

    1/ The two triangles FGP and CEP are congruent--> Area of the purple region= 1/2 area of the big rectangle.
    2/ Note that AF= FC-> the triangle AFC is an isosceles one, which means that the three triangles AFG=CFG=CFB
    -> Area of the purple region= 3 ab/2😅😅😅

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @soli9mana-soli4953
    @soli9mana-soli4953 17 дней назад

    GP+PC=FP+PE=b
    AC=2b
    AD=b
    Then DC=bsqrt3
    Area = 1/2*b*bsqrt3

    • @PreMath
      @PreMath  15 дней назад +1

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @soli9mana-soli4953
      @soli9mana-soli4953 15 дней назад

      @PreMath thank you Prof, Happy new year to you too ❤️❤️❤️

  • @unknownidentity2846
    @unknownidentity2846 18 дней назад +3

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we observe that the triangles AFG and CEP are similar (∠AGF=∠CEP=90° ∧ ∠ECP=∠FAG). So we can conclude:
    EP/CE = FG/AG
    EP/a = a/b
    ⇒ EP = a²/b
    The triangles CEP and FGP are congruent (CE=FG=a ∧ ∠CEP=∠FGP=90° ∧ ∠CPE=∠FPG). Therefore we know that CP=FP. Now we apply the Pythagorean theorem to the right triangle CEP:
    CP² = CE² + EP²
    FP² = CE² + EP²
    (EF − EP)² = CE² + EP²
    EF² − 2*EF*EP + EP² = CE² + EP²
    EF² − 2*EF*EP = CE²
    b² − 2*b*(a²/b) = a²
    b² − 2a² = a²
    b² = 3a²
    ⇒ b = √3a
    Now we are able to calculate the area of the purple region:
    AF² = AQ² + FQ² = a² + b² = a² + 3a² = 4a² ⇒ AF = 2a
    A(purple) = A(ADEF) − A(AFG) = AF*AD − (1/2)*AG*FG = (2a)*b − (1/2)*b*a = 2ab − ab/2 = 3ab/2 = (3√3/2)a²
    Best regards from Germany

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @dirklutz2818
      @dirklutz2818 11 дней назад

      or A(purple) = (√3/2)b²

  • @daniellerosalie2155
    @daniellerosalie2155 18 дней назад

    30, 60, 90 triangles is the (square root of 3/2)*b^2

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @MegaSuperEnrique
    @MegaSuperEnrique 19 дней назад

    That was AAS congruency, not ASA, not that it matters too much

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

  • @sukumaranpm9192
    @sukumaranpm9192 15 дней назад

    FOOLISH

  • @wastedontheyoung5585
    @wastedontheyoung5585 18 дней назад

    since area triangle PEC = area triangle PGF then answer is area triangle ADC
    its area is half height times base.
    since AD = BC then height is b
    since DC = AB then base is AF + FB
    FB is a and we can calculate AF using Pythagorean Theorem or (a^2+b^2)^(1/2)
    although my answer is more complicated it was derived faster and has fewer steps
    does it simplify to your answer?

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @wastedontheyoung5585
      @wastedontheyoung5585 15 дней назад

      @@PreMath And to you as well

  • @awandrew11
    @awandrew11 18 дней назад

    area AQFG- 1/2 ab is the answer, AQFG area =( root of a square + b square( Pythagorus))Xb, answer is b( root {a square+ b square}-1/2 a}?

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @MarieAnne.
      @MarieAnne. 14 дней назад

      You are correct, but this is indeed the same as 3ab/2
      In right triangle AQF, we get *AF = √(a²+b²)*
      Using similar triangles ABC and FQA, we get (AF+a)/b = b/a → *AF = (b²−a²)/a*
      Solving both equations, we get b² = 3a²
      Substituting this into your solution, we get:
      Area = b (√(a²+b²) − a/2) = b (√(a²+3a²) − a/2) = b (2a − a/2) = b (3a/2) = 3ab/2

  • @DanyVanImpe
    @DanyVanImpe 18 дней назад

    That is only true if the triangle AQF is a triangle with angles 30°- 60°- 90°

    • @PreMath
      @PreMath  15 дней назад

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @MarieAnne.
      @MarieAnne. 14 дней назад

      You're starting with the wrong premise. Answer is true, since it was solved correctly.
      Therefore, AQF *IS* a triangle with angles 30°- 60°- 90°
      Here's a different way to show it:
      In right △AQF, we get AF = √(a²+b²)
      Using similar triangles ABC and FQA, we get (AF+a)/b = b/a → AF = (b²−a²)/a
      Solving both equations, we get b² = 3a²
      AF = √(a²+b²) = √(a²+3a²) = 2a OR AF = (b²−a²)/a = (3a²−a²)/a = 2a
      In △AQF, AQ = a, QF = b = a√3, AF = 2a. Therefore △AQF is a 30°- 60°- 90° triangle.

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 17 дней назад

    The Solution herein presented is not complete. Why?
    Because, if Half of Rectangle [ABCD] Area is equal to 3ab/2. it means that the whole Area is equal to 3ab. What does it mean? That b = 2a!! That is Rectangle [ABCD] Area = 6a^2
    Then the Purple Shaded Area can be given on only, as a Function of a : A(a) = 3a^2
    And this is The Right Answer : Purple Shaded Area : A(a) = 3a^2 Square Units!!

    • @sukumaranpm9192
      @sukumaranpm9192 17 дней назад +1

      checked for a=3 b=4 answer is 14

    • @LuisdeBritoCamacho
      @LuisdeBritoCamacho 17 дней назад

      @@sukumaranpm9192 , the whole Area [ABC] is not 3ab, in fact is A = (3a) * b. Wich means that Length AB = 3a, because BC = b and AF = 2a. Thanks!

    • @PreMath
      @PreMath  15 дней назад +1

      Thanks ❤️🙏
      Have a happy, safe, and prosperous New Year!

    • @MarieAnne.
      @MarieAnne. 14 дней назад

      @@LuisdeBritoCamacho b = a√3 (not 2a). AF = 2a

    • @LuisdeBritoCamacho
      @LuisdeBritoCamacho 13 дней назад

      @@MarieAnne. , What I am saying is that something is wrong in this Problem. I am not solving it.
      If the Solution is PSA = 3ab/2, wich means that Rectangle [ABCD] Area (RA) is equal to RA = 3ab. Tgis means geometrically 3 Rectangles of Side a and b.
      But, as we can see AF^2 = (a^2 +b^2) ; AF = sqrt(a^2 + b^2) ; AB = sqrt(a^2 + b^2) + a
      Something is wrong Geometrically speaking with this Problem. I can be solved Algebraically but has no conection, whatsover, with Geometry.