Euler's Reflection Formula - Two very ELEGANT Proofs!

Поделиться
HTML-код
  • Опубликовано: 27 дек 2024

Комментарии • 100

  • @janus3042
    @janus3042 5 лет назад +103

    "I am not going to spoiler what the Solution ist" said the person who put the Solution in the Thumbnail :D
    greetings from austria (europe)

    • @isaacaguilar5642
      @isaacaguilar5642 5 лет назад +20

      Gotta make sure people dont confuse it with Australia huh

    • @thommunism1656
      @thommunism1656 5 лет назад +4

      I was going to write the exact same thing, but I'm from Australia (Australia). coincidence???

  • @ba-tekku
    @ba-tekku 5 лет назад +34

    Such a gorgeous identity. Nearly as breathtaking as you, Papa.

  • @h4c_18
    @h4c_18 5 лет назад +24

    Interestly enough, gamma((1-x)/2)*gamma((1+x)/2) changes the sine into cosine

    • @nontrivialdog
      @nontrivialdog 5 лет назад +11

      That's because the 1/2 introduces a pi/2 into the sine. Trivial yo

    • @h4c_18
      @h4c_18 5 лет назад +2

      @@nontrivialdog Yep, specially on x/2 tho

  • @duggydo
    @duggydo 5 лет назад +3

    I awaiting the integral video. Papa promised it would be long and hard one! Sounds fun ;)

  • @hopegarden7636
    @hopegarden7636 5 лет назад +9

    The most elegant identity in mathematics also along with the complex version of this that involves hyperbolic Sine function!

    • @hopegarden7636
      @hopegarden7636 5 лет назад +1

      @@PapaFlammy69 Make one for that too just as a skit or something...

  • @hendrik2765
    @hendrik2765 5 лет назад +20

    > Says I don’t want to spoiler the solution
    > Puts it in the Thumbnail anyway
    mfw

  • @frozenmoon998
    @frozenmoon998 5 лет назад +2

    What a flammable surprise!

  • @SirPuFFaRiN
    @SirPuFFaRiN 5 лет назад +13

    The fourier series of cos(ax) can also give the result

  • @ElDiarioLudita
    @ElDiarioLudita 5 лет назад +5

    Sin(x pi)=x pi
    Take it or leave it

  • @purewaterruler
    @purewaterruler 5 лет назад +9

    Isn't it a reflection because you are reflecting around the 0 of the factorial?

    • @juanignaciodiaz28
      @juanignaciodiaz28 5 лет назад +1

      Any formula which relates f(a - x) with f(x) for any a, is a reflection formula.
      Source: Wikipedia

  • @andreamonteroso8586
    @andreamonteroso8586 4 года назад +1

    this channel is spewing good stuffs!

  • @mohammedal-haddad2652
    @mohammedal-haddad2652 5 лет назад

    Captain Hook and gamma function, a flammable combination. Thank you for nice derivation.

  • @TriflingGnome920
    @TriflingGnome920 5 лет назад

    Thanks Mr. Anthony Fantano, Nice Flannel. I give this video a 10.

  • @11crazykitties
    @11crazykitties 4 года назад

    I fucking love your videos. You are saving my life for my project

  • @angelmendez-rivera351
    @angelmendez-rivera351 5 лет назад +1

    I prefer the version of the equation that features the Pi function as opposed to the Gamma function. Π(z) = Γ(z - 1), thus Γ(1 - z) = Π(-z), and Γ(z) = Π(z - 1). Multiply the equation by z, so that the formula reads Π(z)Π(-z) = πz/sin(πz). The normalized cardinal sine function is defined by the equation sinc(z) = lim sin(πt)/(πt) (t -> z), so for nonzero z, πz/sin(πz) = 1/sinc(z). Meanwhile, for z = 0, Π(z) = Π(-z) = 1 = lim sin(πt)/(πt) (t -> 0) = sinc(0) = 1/sinc(0). Therefore, for all z, Π(z)Π(-z) = 1/sinc(z). I find this formula far more elegant than the popular version. And presumably, the proof would be simpler since you would not need to deal with those annoying factors of z that appear in the formulas.

  • @willford3087
    @willford3087 5 лет назад +7

    Flammable maths does product k >/1 mean the same as proudct from 1 to inf, ive not seen this notation before

    • @marks9618
      @marks9618 5 лет назад +6

      Yes, it's just shorthand

  • @MikeJenson
    @MikeJenson Год назад

    You said it was hard to derive if you just substitute into the formula. This took me a few hours, but you can simplify this expression and factorise the part in the infinite product. Then multiply the inside of the infinite product by
    ((k^2-z^2)/k^2) *(k^2/(k^2-z^2)). The first of these terms should cancel with the pre-existing stuff (+ the 1/(1-z)) and should only be left with the second half. This will yield the reflection formula.

  • @shaqramento3238
    @shaqramento3238 5 лет назад

    Amazing. Exactly the same problem appeared on my Übungsblatt today :D

  • @micrapop_6390
    @micrapop_6390 5 лет назад

    5:55 : You lied to us, you are secretly presenting a physics video !

    • @micrapop_6390
      @micrapop_6390 5 лет назад

      @@PapaFlammy69 You are again copying shamelessly this poor andrew dotson x)

  • @jameyatesmauriat6116
    @jameyatesmauriat6116 11 месяцев назад

    What is the application of this function in reality?

  • @habouzhaboux9488
    @habouzhaboux9488 5 лет назад +2

    Can't understand the linear factors thing. Following the same sense, doesnt tan(x) have the same linear factors as sin(x), making sin(x) = tan(x)?

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 лет назад +1

      Ha- Bouz It does not have the same linear factors as sine. Remember that sin(t) has no singularities, while tan(t) does, so some of the linear factors are located in the denominator. He did a video on this, actually, expressing the six basic trigonometric functions as an infinite product of linear factors.

  • @peterclark5244
    @peterclark5244 5 лет назад

    God this was beautiful to watch

  • @MathTravels
    @MathTravels 3 года назад +1

    This is extremely well explained. The only thing I don't understand is the Newton joke :)

    • @PapaFlammy69
      @PapaFlammy69  3 года назад +1

      Hehe :D Glad you liked the video :3

  • @elirome6978
    @elirome6978 5 лет назад

    Thats cool, so we found that the minimal value of Γ(z) Γ(1-z) is π, with z=π/2+2πn

  • @willnewman9783
    @willnewman9783 5 лет назад +1

    Are you going to start using this analytic stuff to prove number-theoretic results about the integers?

  • @einzuwasu5563
    @einzuwasu5563 5 лет назад +1

    HE CALLED ME FELLOW MATHMATICIAN...MOM I DID IT IM A MATHMATICIAN NOW

  • @DarkMonolth
    @DarkMonolth 5 лет назад

    I'd guess it's called the reflection formula because 1-z is the complement in some sense. I'd think of it like in probability, the probability of an event A's complement happening is 1 - P(A). Probably not on the right track, but my first thought given the prevalence of the gamma function in probability.

  • @DyverD1931
    @DyverD1931 5 лет назад

    What is an equation of motion when weight hanging and sliding down on oblique elastic rope?

  • @lordlix6483
    @lordlix6483 5 лет назад

    Finally the reflect formula :'D

  • @GhostyOcean
    @GhostyOcean 5 лет назад +1

    Another way to write this is
    G[1+z]G[1-z]=PI[1-(z/k)^2]^-1

  • @dromn13
    @dromn13 4 года назад

    Can we write x! =x•(x-1)! even for non integral x?

  • @nicholasheilig3694
    @nicholasheilig3694 4 года назад

    Didn't you forget a minus sign from the - z?

  • @Mathemarius
    @Mathemarius 3 года назад

    It's called reflection formular because it is a reflection at the axis with real part 1/2.

  • @giacomobontempi9112
    @giacomobontempi9112 5 лет назад +4

    I love when you say “meaning” papa, that turns me on

  • @owenl3929
    @owenl3929 5 лет назад

    You should do a video working with the Barnes G-Function

  • @Yellowgary
    @Yellowgary 5 лет назад

    Is papa flammy doing a homage to the melon with the yellow flannel?

    • @Yellowgary
      @Yellowgary 5 лет назад

      I must rate this proof “not good” due to a lack of the fundamental theorem of engineering

  • @Henrikko123
    @Henrikko123 5 лет назад +1

    Maybe meetup next time? I’ll be in München at Oktoberfest week 40. You wanna join?

  • @jadegrace1312
    @jadegrace1312 5 лет назад

    As soon as I saw the video I wrote out the proof that I thought of, I'm curious to see if you did it the same way.
    Edit: I used the Euler product formula for the gamma function and I did go down the route of plugging in 1-z

  • @mrandersonpw53
    @mrandersonpw53 5 лет назад

    Me: I'm Chilean and I'm going to watch the eclipse.
    *Papa Flammy videos pop up now"
    Me: fuck off sun.

  • @neiljoshualerin9108
    @neiljoshualerin9108 3 года назад

    I can prove that using the riemann functional zeta equation

  • @qubix27
    @qubix27 5 лет назад +2

    Σ Infinity boi + Π infinity cirl best pair ever

  • @ElDiarioLudita
    @ElDiarioLudita 5 лет назад +3

    Girlfriend of famable maths:
    What are you thinking about? You look so concentrating...
    Famable maths:
    Oh its nothing darling... i just think about our futura as a pair...
    Flamable maths mind:
    Euler macaroni waifu

  • @ayaz.unstoppable
    @ayaz.unstoppable 5 лет назад +1

    Hello

  • @lilyyy411
    @lilyyy411 5 лет назад

    I

  • @sofianeafra6161
    @sofianeafra6161 5 лет назад

    Can we evaluate divergent integrals ?

    • @sofianeafra6161
      @sofianeafra6161 5 лет назад

      @@PapaFlammy69 but we can use cauchy's principal value 🔥

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 лет назад +1

      Flammable Maths I think he meant it in the Ramanujan sense or something similar to that.

    • @sofianeafra6161
      @sofianeafra6161 5 лет назад

      @@angelmendez-rivera351 i am talking about using cauchy's principal value 🔥

  • @izthefor
    @izthefor 5 лет назад

    My boi flammy can i get in those credits

    • @izthefor
      @izthefor 5 лет назад

      @@PapaFlammy69 yayy

  • @kanekekun2584
    @kanekekun2584 5 лет назад

    someone plz help me with the integral of (10x^2-x^4)^1/2 dx

    • @morganmitchell4017
      @morganmitchell4017 5 лет назад

      Wolfram Alpha???

    • @morganmitchell4017
      @morganmitchell4017 5 лет назад

      Maybe you can factor out the x^2 and then do a trig sub.

    • @hal6yon
      @hal6yon 5 лет назад

      @@morganmitchell4017 If you dragged out the x² of the radical sign then you'd have a direct u-sub situation in your hands

    • @hopegarden7636
      @hopegarden7636 5 лет назад

      Take out the x^2 term out of the root and then parametrize it using sqrt of 10 sint

    • @silentinferno2382
      @silentinferno2382 5 лет назад

      Take the x^2 out of the root, then substitute x^2 for t, multiply and divide by the constant. √10-x^2 has a semi standard result or so I believe, as √a^2-x^2.

  • @souvikchatterjee3450
    @souvikchatterjee3450 5 лет назад +1

    Used a similar legendre duplication formula a while back,for proving the orthogonality relation of legendre polynomials... It was a thing of beauty..😋

  • @jattprime2927
    @jattprime2927 5 лет назад

    i don't understand how maths RUclipsrs know so much maths, like I'm in the second year of a maths degree and i can barely remember all the stuff from first year.... do you guys read and revise everything again before each video?

  • @ylenolsreppeptgs
    @ylenolsreppeptgs 5 лет назад

    Legendre duplication next pls pls pls :)

  • @DyverD1931
    @DyverD1931 5 лет назад

    Maybe next time explain this problem: f(x)=x(f(x)) ! How about that?!

  • @Riiisuu
    @Riiisuu 5 лет назад +1

    What the fuck

  • @DyverD1931
    @DyverD1931 5 лет назад

    I have a math trick for you! Do you believe that when multiplying is like subtraction?!
    Here it is: 2nx=2n-x (where n € R)

  • @chengzhou8711
    @chengzhou8711 5 лет назад

    Papa Flammey, you should play me in chess. If you reply with an affirmative response, I will send you a link. You may choose the time control format and the color of pieces that you play with.

    • @chengzhou8711
      @chengzhou8711 5 лет назад

      Flammable Maths lichess.org/flyOOn17
      Time format is 10 minute with 10 second increments (Each move grants you 10 seconds). The pieces are going to be random. If you don’t see it or have changed your mind then don’t worry

    • @chengzhou8711
      @chengzhou8711 5 лет назад

      Flammable Maths hey the link expired so maybe another time uwu

  • @andreamonteroso8586
    @andreamonteroso8586 4 года назад +1

    nah video

  • @post-ironicgarbageig2345
    @post-ironicgarbageig2345 5 лет назад +2

    First?

    • @49fa75
      @49fa75 5 лет назад +4

      yeah

  • @2kreskimatmy
    @2kreskimatmy 5 лет назад

    hey that's cute owo

  • @tiago4472
    @tiago4472 5 лет назад

    Do you know speak something in portuguese?😅

    • @tiago4472
      @tiago4472 5 лет назад

      @@PapaFlammy69 😊

  • @orangutan7934
    @orangutan7934 5 лет назад +1

    :)

  • @silentinferno2382
    @silentinferno2382 5 лет назад

    Papa, what's engrrrrrriiiiissssshhhhhhhh