brother what's up with you? damn you are so passionate about what you do. shout out to you and big love for your help in making us understand concepts to this level.
Is it possible that the two points could be so close that there's no point (c) between them with the same gradient of the line joining the points? I am not certain that there should always be such a point (c).
As long b is not equal to a , there will always be a c between. You might think the points are close but when you zoom in , there are infinitely many points between two boundary points. As long as the function is continuous and differentiable over the interval.
I have learnt my entire university module through you. Your passion for mathematics/calculus is infectious. Thank you so much
Thank you for this comment. It's encouraging. Never Stop Learning.
Thank you sooo much. Your explanations are spot on. Keep up the great work. ❤
If you could only be our calculus 1 lecturer, then we will give you distinction. Thank you for the videos they are really helpful 🙏❤️
thank you a lot, it is a great video. greetings from Turkey!
Thank you.
SO clear and so well explained. :)
brother what's up with you? damn you are so passionate about what you do. shout out to you and big love for your help in making us understand concepts to this level.
Thanks really detailed and beautifully explain
You helped me understand this. Thank you!
better than all my professors
Very good. Thanks 🙏
thank you very much GOAT
Thanks for a smart explanation 😊. But what is the use of this theorem? In which problems can be used? Please, give us some samples ❤. Much thanks
Very good
Sir please can you use the mean value theorem if the theorem does not holds
No! You can only use it if the conditions are met.
Nice tutorial
How do we apply this mean value theorem?
Is it possible that the two points could be so close that there's no point (c) between them with the same gradient of the line joining the points? I am not certain that there should always be such a point (c).
As long b is not equal to a , there will always be a c between. You might think the points are close but when you zoom in , there are infinitely many points between two boundary points. As long as the function is continuous and differentiable over the interval.
I now understand that once there's a difference between "b" and "a", no matter how small, there will always be a "c" between them.
The MVT, or as some of like to call it, The really mean value theorem
i mean if the rolls theorem does not holds
🔥🔥🔥
So underrated
You are very handsome