Oxford University Admission Exam Question

Поделиться
HTML-код
  • Опубликовано: 21 ноя 2024

Комментарии • 8

  • @hafeezrehman8692
    @hafeezrehman8692 День назад +1

    Nice 👍

    • @superacademy247
      @superacademy247  День назад

      Thanks for the appreciation! 😊💕I'm glad you enjoyed it! 💯😁

  • @miketseng9253
    @miketseng9253 12 часов назад +1

    we know that 2^y is non-zero real number, so we let 2^x - 2^y = 2^y(2^x/2^y - 1) since the second equaiton shows that x-y=2; we have 2^y(2^2 - 1) = 3*2^y; as the first equation shows, it's equal to 4, we have 3*2^y=4 i.e. 2^y=4/3; we take log base 2 on both side, log2^y=log4/3 i.e. ylog2=log4-log3 i.e. y=2-log3, and as second equation shows, x=2+y, we have x=2+(2-log3)=4-log3.

  • @EC4U2C_Studioz
    @EC4U2C_Studioz День назад

    I don't think you needed to use the power rule for logs as it’s implied from canceling the base with the log of the same base leaving with whatever is in the exponent on one side of the equation.

  • @farancient
    @farancient День назад

    x-y = 2, x = 2 + y
    2^(2+y) - 2 ^y = 4
    2^y * (2^2 - 1) = 4
    2^y = 4/3
    y = (log 4-log3) / log2 = 0.4150
    X = 2.4150

  • @davidshen5916
    @davidshen5916 День назад

    4=2^X-2^Y=2^Y(2^(X-Y)-1)=2^Y(2^2-1)=3*2^Y,2^Y=4/3, Y=LOG(4/3)/LOG(2)=2-LOG(3)/LOG(2),X=4-LOG(3)/LOG (2)

  • @nikolayplatnov5148
    @nikolayplatnov5148 День назад

    Oxford admission to what ? To the "course of equity and verieties " 😂😂😂

  • @ChavoMysterio
    @ChavoMysterio 19 часов назад

    2^x-2^y=4
    x-y=2 -----> y=x-2
    2^x-2^(x-2)=4
    2^x-¼(2^x)=4
    4(2^x)-2^x=16
    3(2^x)=16
    2^x=⅓(2⁴)
    2^(x-4)=⅓
    x-4=log_2(3^-1)
    x-4=-log_2(3)
    x=4-log_2(3) ❤
    y=4-log_2(3)-2
    y=2-log_2(3) ❤