Can you calculate the angles a, b, and c? | (Circle) |

Поделиться
HTML-код
  • Опубликовано: 4 дек 2024

Комментарии • 49

  • @SladeMacGregor
    @SladeMacGregor 15 часов назад +3

    This problem is awesome PreMath!

    • @PreMath
      @PreMath  12 часов назад

      Glad to hear that!
      Thanks for the feedback ❤️

  • @davidellis1929
    @davidellis1929 12 часов назад +3

    Another way to solve it is by finding the arc ABC to be twice angle D, or 228 degrees. Since arc AB is 142 degrees, that leaves arc BC at 86 degrees, so angle A is half 86+100, or 93 degrees. From here, one can say angle C is 180-93, or 87 degrees, and angle B is 180-114, or 66 degrees.

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️

  • @alster724
    @alster724 3 часа назад

    Thanks for the refresher on arc measures.

  • @matthewmcdaid7962
    @matthewmcdaid7962 11 часов назад +3

    I solved it using isosceles triangles. Four triangles with apexes at O. And of course got the same result.

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for the feedback ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 11 часов назад +2

    Reflex angle AOC=114*2=228 degs
    Arc BC =228 -142=86 degs
    Arc AD = 360-228-100=32 degs
    c=(142+32)/2=174/2 =87 degrees
    b=(100+32)/2=66 degrees
    a=(100+86)/2=93 degrees

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️

  • @neilmorrone691
    @neilmorrone691 11 часов назад +1

    Very nice explanation of this lesson on a topic in the subject of Geometry. Grazie!

    • @PreMath
      @PreMath  5 часов назад

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️

  • @jamestalbott4499
    @jamestalbott4499 9 часов назад +1

    Thank you!

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      You are very welcome!
      Thanks for the feedback ❤️

  • @sorourhashemi3249
    @sorourhashemi3249 53 минуты назад

    Thanks. Easy

  • @marcgriselhubert3915
    @marcgriselhubert3915 15 часов назад +1

    Fine.

    • @PreMath
      @PreMath  5 часов назад

      Thanks for the feedback ❤️

    • @DaRealNoobKing
      @DaRealNoobKing 3 часа назад

      stop not using vectors, pls just use vectors

  • @marioalb9726
    @marioalb9726 14 часов назад +2

    b = 180° - 114° = 66°
    Angle AOC = 2*66°= 132°
    Angle AOD = 132°-100°= 32°
    c = ½ (142°+32°) = 87°
    a = 180° - c = 93°
    ( Solved √ )

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 часа назад

    {142°AB+114DC+100°O}=356°ABDCO/ 360°/356°ABDCO=1.4ABDCO 4:21 1.2^2 1.1^2 1.2 (ABDCO ➖ 2ABDCO+1).

  • @AmirgabYT2185
    @AmirgabYT2185 15 часов назад +2

    93°; 66°; 87°

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️

  • @quigonkenny
    @quigonkenny 13 часов назад +1

    As quadrilateral ABCD is a cyclic quadrilateral, opposite angles must sum to 180°. As angle d is given as 114°, then [ b = 180°-114° = 66° ]
    As the angle subtending an arc from the circumference is half the angle subtending the same arc from the center, then as ∠ADC (angle d) = 114°, ∠AOC = 2(114°) = 228°. As ∠AOB = 142°, ∠BOC = 228°-142° = 86°.
    As ∠CBA (angle b) = 66°, then ∠COA = 2(66°) = 132°. This also could have been determined by subtracting the value of ∠AOC (228°) from 360°. As ∠COD = 100°, then ∠DOA = 132°-100° = 32°.
    As angle a subtends arcs CD and BC, then:
    a = (∠COD+∠BOC)/2
    a = (100°+86°)/2
    [ a = 186°/2 = 93° ]
    As angle c subtends arcs AB and DA, then:
    c = (∠AOB+∠DOA)/2
    c = (142°+32°)/2
    [ c = 174°/2 = 87° ]

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️

  • @ChuzzleFriends
    @ChuzzleFriends 13 часов назад +1

    ABCD is a cyclic quadrilateral, so opposite angles must be supplementary.
    Therefore, m∠B = b° = 180° - 114° = 66°. (b = 66)
    Let's draw radii AO & CO. This forms a central ∠AOC which subtends the same arc with ∠B.
    By the Measure of an Inscribed Angle Theorem, m∠AOC = 66° * 2 = 132°.
    So, minor arc AC must also measure 132° (A measure of a central angle is the measure of the arc it subtends). Since the minor arc CD already measures 100°, arc AD must be a minor arc that measures 32°.
    Draw radii BO & DO. This forms another central ∠BOD which subtends the same arc with ∠C.
    By the Arc Addition Postulate, arc BD must be a minor arc that measures 142° + 32° = 174°.
    So, m∠BOD = 174°. By the Measure of an Inscribed Angle Theorem, m∠C = c° = (174°)/2 = 87°. (c = 87)
    Finally, m∠A = a° = 180° - 87° = 93°. (a = 93)
    So, the values of the variables are as follows:
    a = 93
    b = 66
    c = 87

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️

  • @highlyeducatedtrucker
    @highlyeducatedtrucker 13 часов назад +2

    Another way to do this one: Draw an auxilliary line from A to C. Then you can use the Central Angle Theorem to find angle ACB and angle CAD. (Angle ACB is 71, angle CAD is 50.) Then use sum of angles in a triangle = 180 to find out the rest. (Angle ACD = 180-114-50=16. Angle BCD = Angle ACD + Angle ACB = 71 + 16 = 87. And Angle CAB = 180 - Angle BCD = 180 - 87 = 93.)

    • @PreMath
      @PreMath  5 часов назад +1

      Excellent!
      Thanks for sharing ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz 13 часов назад +1

    b=180-114=66, 114-(142/2)=43, angle BC=43×2=86, thus angle AD=360-100-142-86=32, a=86/2+100/2=93, thus c=180-93=87.😊

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 11 часов назад +1

    Ang DOC =100 degs
    Ang ODC =ang OCD =(180-100)/2=40 degs
    Ang AOC=142 degs
    Ang OAC =ang OCA =(180-142)/2=19 degs
    Any b =114/2=66 degs
    Ang OBC =angle OCB =66-19=47 degs
    c=40+47=87 degs
    Angle a=360-66-87-114=93 degs

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️

  • @johankotze42
    @johankotze42 12 часов назад

    I initially thought PreMath had lost his marbles when he first explained the subtended angle using AOB etc. 😀
    I did the solution by drawing in a;; the radii from O to A B C and D. Then you end up with a bunch of isosceles triangles.

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for the feedback ❤️

  • @gelbkehlchen
    @gelbkehlchen 4 часа назад

    Solution:
    In a chord quadrilateral, the opposite angles add up to 180°. Therefore: b+114° = 180° |-114° ⟹ b = 66°
    The corresponding central angle at 114° is twice as large, namely 228°. Therefore: arc BC + 142° = 228°|-142° ⟹ arc BC = 86° ⟹
    Central angle at a = arc BC + arc CD = 86°+100° = 186° ⟹
    a = 186°/2 = 93° ⟹ c = 180°-93° = 87°

  • @wackojacko3962
    @wackojacko3962 14 часов назад

    @ 4:13 , how does that Central Angle Theorem work when Central Angle is 0⁰ ? It's a bizarre lookin Bowtie too say the least. 🤔 A Bowtie with only two lines! 😊

    • @PreMath
      @PreMath  5 часов назад +1

      Wow😀
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 14 часов назад +3

    Let's find the angles:
    .
    ..
    ...
    ....
    .....
    A convex quadrilateral ABCD is cyclic if and only if its opposite angles add up to 180°. So we can conclude:
    d = ∠ADC = 114° ⇒ b = ∠ABC = 180° − d = 180° − 114° = 66°
    According to the central angle theorem we obtain:
    ∠ACB = ∠ADB = ∠AOB/2 = 142°/2 = 71°
    ∠CAD = ∠CBD = ∠COD/2 = 100°/2 = 50°
    ∠BDC = ∠ADC − ∠ADB = 114° − 71° = 43°
    Let E be the point where AC and BD intersect. Now we apply the exterior angle theorem to the triangle ADE:
    ∠CED = ∠DAE + ∠ADE = ∠CAD + ∠ADB = 50° + 71° = 121°
    From the interior angle sum of the triangle CDE we obtain:
    180° = ∠DCE + ∠CDE + ∠CED = ∠ACD + ∠BDC + ∠CED = ∠ACD + 43° + 121° = ∠ACD + 164° ⇒ ∠ACD = 180° − 164° = 16°
    Now we are able to calculate the values of the remaining angles:
    c = ∠BCD = ∠ACD + ∠ACB = 16° + 71° = 87°
    a = ∠BAD = 180° − c = 180° − 87° = 93°
    Best regards from Germany

    • @PreMath
      @PreMath  5 часов назад

      Excellent!😀
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 9 часов назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) Arc AB = 142º
    02) Arc ABC = (114º * 2) = 228º
    03) Arc BC = 228º - 142º = 86º
    04) Arc CD = 100º
    05) Arc AD = 360º - (142º + 86º + 100º) = 360º - 328º = 32º
    06) Angle a = (186º / 2) = 93º
    07) Angle b = (132º / 2) = 66º
    08) Angle c = (174º / 2) = 87º
    09) Angle d = 114º
    09) Check : 93º + 66º + 87º + 114º = 360º
    Thus,
    OUR BEST ANSWER IS :
    Angle a = 93º
    Angle b = 66º
    Angle c = 87º

    • @PreMath
      @PreMath  5 часов назад +1

      Excellent!
      Thanks for sharing ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 7 часов назад +1

    Join AC
    Ang CAD = 1/2 ang COD =50
    Now from 🔺 ACD ang ACD =180-114 - 50=16
    Angel ACB =1/2*ang AOC
    = 142/2=71
    Hence c =16+71 =87
    a= 180-87 =93
    b= 180- 114=66

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 11 часов назад +1

    My way of solution ▶
    ∠ADC = 114°
    Since the sum of opposite angles of a quadrilateral inscribed in a circle is 180°, we can write:
    ∠ADC + ∠CBA = 180°

    ∠CBA = 66°
    b= 66° ✅
    ∠ADC= 114°
    114°*2= ∠(AB) + ∠(CB)
    ∠(AB)= 142°

    228°= 142° + ∠(CB)
    ∠(CB)= 86°
    a= [∠(DC) + ∠(CB)]/2
    ∠(DC)= 100°
    ∠(CB)= 86°

    a= 93° ✅
    a+c= 180°
    a= 93°

    c= 87° ✅
    a= 93°
    b= 66°
    c= 87°

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Thanks for sharing ❤️

  • @TramHicks
    @TramHicks 11 часов назад

    I understand some

    • @PreMath
      @PreMath  5 часов назад

      No worries...
      Thanks for the feedback ❤️

  • @k9slayer
    @k9slayer 14 часов назад +1

    magic

    • @PreMath
      @PreMath  5 часов назад

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️