How to think outside the box? | Find Area of Blue Trapezoid | Trapezium | Important skills explained

Поделиться
HTML-код
  • Опубликовано: 23 дек 2024

Комментарии • 105

  • @anahimaceda7070
    @anahimaceda7070 Год назад +6

    You're awesome!!! I am able to understand quite well all what you explain, teacher! Thanks!

  • @jackhusky9326
    @jackhusky9326 Год назад +4

    once you have your triangle a,b,c 56,42,70 there is no need to go through Pythagorus or complimemtary angles. Simply use Herons law to find the area of the triangle a,b,c which is 1176. Then using Area = 1/2 Base * Height 1176= 35 *h therefore h= 1176/35 = 33.6

  • @Mycroft616
    @Mycroft616 Год назад +2

    If you drop the perpendiculars DE and CF to AB, EF = 21. This creates Right Triangle AED with height h and base x, Right Triangle BFC with height h and base 70 - x, and rectangle EFCD with length 21 and width h. By combining the two triangles into one along the heights connecting D to C and E to F, the right angles mean we created a new Triangle ABC with base 70 and height h. We then use Heron's Formula to find the Area of the Triangle ABC, then plug that in to the classic base-height formula to get h. Then we calculate the area of Rectangle DEFC and add this area to that of Triangle ABC. That gives us the Area of Trapezoid ABCD.

  • @georgebliss964
    @georgebliss964 Год назад +8

    I calculated "h" another way.
    I dropped perpendiculars from points D & C on to base AB.
    Then base length of left triangle formed, I called X.
    The base length of right triangle formed is ( 91 - X - 21) equal to (70 - X).
    Then in left triangle by Pythagoras, h^2 = 56^2 - X^2.
    Also, in right triangle, h^2 = 42^2 - (70 - X)^2.
    Equating the h^2 values:-
    56^2 -X^2 = 42^2 - 70^2 + 140X - X^2.
    56^2 = 42^2 - 70^2 + 140X.
    X = 44.8.
    Then from left triangle, h^2 = 56^2 - 44.8^2.
    h = 33.6.

  • @anatoliy3323
    @anatoliy3323 Год назад

    To find area of triangle ADE we can also use the Heron theoreme A=sqr root of p(p-a)(p-b)(p-c). p is the semiperimetre of ADE. Thanks a lot for your lesson, dear Mr PreMath. God bless you and your family

  • @mohanramachandran4550
    @mohanramachandran4550 Год назад +1

    Another way to find h
    from 4:10 to 7 :20
    In Triangle ADE
    Area = ½ *AD * DE
    = 56 * 42 ÷ 2. = 1176
    In another way. ½ * AE * h = 1176
    h = 1176 * 2 ÷ 70 = 33.6
    h = 33.6

  • @steveschmidt5156
    @steveschmidt5156 Год назад +1

    I used Heron's formula to find the area of triangle ADE, and then with b = 70 worked backward to find h, which I then used to find the area of the trapezoid.

  • @vidyadharjoshi5714
    @vidyadharjoshi5714 Год назад +1

    Draw a line from D parallel to CB to form triangle ADE with sides 56,42 & 70. Using heron's formula the area = 1176 = 0.5*base*height.
    0.5*70*H = 1176 so height = 33.6. So area of trapezoid ABCD = 0.5*33.6*(21+91) = 1881.6

    • @PreMath
      @PreMath  Год назад

      Excellent!
      Thanks for sharing! Cheers!

  • @rashidchatani
    @rashidchatani Год назад +1

    Took a similar approach to you at the start created the traingle then used law cosine to find an angle then law sine to get the height.

    • @PreMath
      @PreMath  Год назад

      Super!
      Thanks for sharing! Cheers!
      Stay blessed, Rashid dear 😀

  • @davidj7204
    @davidj7204 Год назад

    Neat! At first, I was wondering why you didn't take the fact that we were looking at a right triangle to simply use one of the known sides as the base and the other as the height, and add the area of that triangle to the area of the parallelogram, but then it occurred to me that there is not a simple way to find the area of the parallelogram without perhaps using something like the law of cosines, which I don't even know would work.
    I would love if you could do an alternate video that describes the solving of this problem along the lines of this suggested method! Additionally, it would be really interesting to see another trapezoidal problem with all four known sides but without an interior right triangle

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 Год назад +1

    Very nice and useful method.
    Thanks Sir to your simplify explain .
    ❤❤❤❤

    • @PreMath
      @PreMath  Год назад

      Thanks for liking

  • @panyachunnanonda6274
    @panyachunnanonda6274 Год назад

    Thank you very much, I love this question and your solution

  • @happinesisthebestmakeup7015
    @happinesisthebestmakeup7015 Год назад

    Similar triangle formula you have applied is in correct format?

  • @luigipirandello5919
    @luigipirandello5919 Год назад +1

    Very Nice solution. Thank you, sir.

    • @PreMath
      @PreMath  Год назад

      Most welcome, dear

  • @akash_mv
    @akash_mv Год назад

    Sir in-between you imagined aed as rt angled triangle, how come? and why we should we presume it to be right angled triangle?.. little confusing. By the way you are really good and I have made it aroutine to see all your clips. Thanks a lot and keep it up. God bless u! ....

  • @madhusudangupta3661
    @madhusudangupta3661 Год назад

    Triangle ADE is right or not is immaterial. Knowing three sides of it, Heron's formula gives its area. Now area = 1/2. AD. h gives h. Trapezium area = simple to find now. Parallel side sum multiplied by h is the area.

  • @KAvi_YA666
    @KAvi_YA666 Год назад

    Thanks for video.Good luck sir!!!!!!!!!!!!

  • @shmuelzehavi4940
    @shmuelzehavi4940 Год назад

    Nice explanation. I have another approach.
    Draw a line from D parallel to CB to form triangle ADE. The triangle ADE sides are 42, 56 and 70 with ratios: 3:4:5 , which means that it's a Pythagorean triple right angle triangle .The sides AD and BC of the trapezoid ABCD intersect at point F. Therefore we have 3 similar Pythagorean triple right angle triangles: ADE , AFB and DFC .
    The areas of the right angle triangles AFB and DFC are:
    A(AFB) = A_0 (AB/5)^2 ; A(DFC) = A_0 (DC/5)^2
    where, A_0 is the area of the basic Pythagorean triple right angle triangle (3,4,5) , which is
    A_0 = (3∙4)/2 = 6
    The area of the trapezoid ABCD is therefore:
    A(ABCD) = A(AFB) - A(DFC) = 6 ((91/5)^2 - (21/5)^2 ) = 6 (14 ∙ 112/5) = 1881.6

  • @ludosmets2018
    @ludosmets2018 Год назад

    Draw 2 perpendiculars (h) from D and C. Call the base of the left triangle y and the base of the right triangle z. Then 56^2 = h^2 + y^2 and 42^2 = h^2 + z^2. Subtract the two equations: 1372= y^2-z^2 or 1372= (y-z)(y+z). y+z= 90-21=70. So y-z= 1372/70= 19,6. If y-z= 19,6 and y+z=70, than y= 44,8. Using the pythagorian theorem for the left triangle gives: 56^2 - 44,8^2= h^2. h= 33,6.

  • @Waldlaeufer70
    @Waldlaeufer70 Год назад +2

    I'll try two right triangles and a rectangle in the middle:
    Triangle on the left: 56² = h² + x² => h² = 56² - x²
    Triangle on the right: 42² = h² + (91 - 21 - x)² = h² + (70 - x)² => h² = 42² - (70 - x)² = 42² - 70² + 140x - x²
    h² = h²
    56² - x² = 42² - 70² + 140x - x²
    140x = 56² + 70² - 42² = 6272
    x = 6272 / 140 = 44.8
    h² = 56² - 44.8² = (56 + 44.8)(56 - 44.8) = 100.8 * 11.2 = 1128.96
    h = 33.6
    A = (91 + 21)/2 * h = 56 * h = 56 * 33.6 = 1881.6

    • @jaisriram07007
      @jaisriram07007 9 месяцев назад +1

      Yes, thats what i do in case of these trapezium problems

  • @sunshinemagagula1284
    @sunshinemagagula1284 Год назад

    What pen-tablet are you using .....

  • @Ramkabharosa
    @Ramkabharosa Год назад +1

    Divide all the lengths by 7, to keep calculations simple. Here a > c are parallel sides,
    & area will be multiplied by 49. By the trapezoid formula, where s= ([a-c]+b+d)/2=12,
    Area = [(a+c)/(a-c)].√{s(s-[a-c])(s-b)(s-d)} = [(13+3)/(13-3)].√{12(12-10)(12-6)(12-8)}
    = (16/10)√{12(2)(6)(4)}= (8/5)(24)= 192/5. Final ans = 49(192/5) = 1,881.6 sq.units.
    The reader's job is to prove the Trapezoid Area formula is true using Heron's fromula.
    .

  • @alanmjohnson
    @alanmjohnson Год назад

    I took a different approach. Dropped verticles from D and C to points E and F. AE is A, FB is b.
    A^2 + h^2 = 56^2, B^2 + h^2 = 42^2
    A^2 - B^2 = 56^2 - 42 ^2 = 1372.
    B = 70 - A, thus...
    A^2 - (70 - A)^2 = 1372
    A^2 - A^2 + 140A - 4900 = 1372
    140A = 6272
    A = 44.8, B = 25.2
    56^2 - 44.8^2 = 1128.96 = 42^2 - 25.2^2 = h^2
    h = 33.6, etc.

  • @tedn6855
    @tedn6855 Год назад

    I solved for height knowing the triangle x lengths add up to 70. The equation was cumbersome getting up to height to fourth power but it reduced to 56*42/70. Is that formula for all trapezoids? Or was this just this one?

  • @mohanlal3898
    @mohanlal3898 Год назад +1

    Good information for me because I have matric level knowledge about Math .

    • @PreMath
      @PreMath  Год назад +1

      All the best, dear
      Thank you! Cheers! 😀

  • @TheOlderandwiser
    @TheOlderandwiser Год назад +5

    divide all sides by 7 to make the math clearer

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @honestadministrator
    @honestadministrator Год назад +3

    Herein AD^2 + BC^2 = (AB - DC)^2
    Hereby AD is perpendicular to BC.
    Height of trapezium
    = (AD x BC)/( AB - DC)
    Hereby area of Trapezium is
    (AD x BC)( AB + DC) /( 2(AB - DC))

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @jimlocke9320
    @jimlocke9320 Год назад

    Constructing DE parallel to CB, dividing the trapezoid into a triangle and a parallelogram, is an approach that many geometry students may take. Then, they may recognize that the triangle is the 3-4-5 special right triangle with sides scaled up but a factor of 14 and the problem is straightforward to solve using PreMath's method. However, let's say that the triangle is not a right triangle. Several viewers have pointed out that Heron's formula can be used to find the area and we then need to compute the area of the parallelogram. We construct DF, as PreMath did, and take the area of the triangle A = (1/2)bh, where length DF = h and length AE = b = 70. In PreMath's case, as an alternative to his similar triangles method, the area of the triangle could be computed by using DE and AD as base and height, and A = (1/2)(56)(42) = 1176 and, solving 1176 = (1/2)(70)(h), h = 33.6, so the parallelogram has area (21)(33.6) and total area is 1176 + 705.6 = 1881.6.
    An alternative to using Heron's formula is to consider right triangles ΔADF and ΔEDF. Let AF have length x, FE have length 70 - x and DF have length h. The Pythagorean theorem produces an equation for each triangle: x² + h² = (56)² and (70-x)² + h² = (42)². Expanding (70 - x)² and consolidating terms, we get -(140)(x) +x² + h² = -3136 or (140)(x) - x² - h² = 3136. Adding the 2 equations, the x² and h² cancel out, leaving (140)(x) = 6272 or x = 44.8. Solving x² + h² = (56)² for the positive value of h, we get h = 33.6. We now have the height of the original trapezoid and can use area of trapezoid formula A = (1/2)(b₁ + b₂)(h) = (1/2)(21 + 91)(33.6) = 1881.6

  • @shriramnk3081
    @shriramnk3081 Год назад

    Area of ADE = 1/2 AD × DE ( trivially since angle ADE is a right angle) = 1/2 × 42 × 56 = 1/2 AE × h = 1/2 70×h
    Therefore h = 42×56/70 = 4.8
    From this Area can be found

  • @advancedintention7169
    @advancedintention7169 Год назад +2

    Nice sir

    • @PreMath
      @PreMath  Год назад +1

      Thanks and welcome

  • @kennethstevenson976
    @kennethstevenson976 Год назад

    Since you found the right triangle measure you could find its area = 42x56/2 = 1176 sq. un. Then 70xh/2 = 1176 ; h = 33.6 un. Then the parallelogram A=21h = 705.6 sq. un. Then the total area is 1881.6 sq. un.

  • @Abby-hi4sf
    @Abby-hi4sf Год назад

    Grea lesson!

  • @Copernicusfreud
    @Copernicusfreud Год назад +1

    Yay! I solved it.

    • @PreMath
      @PreMath  Год назад

      Excellent!
      Thank you! Cheers! 😀

  • @ybodoN
    @ybodoN Год назад +1

    Draw DE parallel to CB with E on AB, draw CF parallel to DA with F on AB and name G the intersecting point of DE and CF.
    Observe that △ADE ≅ △FCB ∼ △FGE ∼ △DGC. Also, about areas, the trapezoid ABCD is △ADE + △FCB − △FGE + △DGC.
    So we have AE = FB = AB - CD = 70 ⇒ FE = 49. Then, using Heron's formula, we calculate area △ADE = area △FCB = 1176.
    Using areas proportions: area △FGE = 1176 (49²/70²) = 576.24 and area △DGC = 1174 (21²/70²) = 105.84. So area ABCD = 1881.6.

    • @PreMath
      @PreMath  Год назад

      Thanks for sharing! Cheers!

  • @martinwalker9386
    @martinwalker9386 Год назад

    Once you know ADE is a right triangle multiply 42 by 56 and divide by 70 giving h = 33.6
    Then ((21 + 91)/2)*33.6=1881.6

  • @jaisriram07007
    @jaisriram07007 9 месяцев назад

    Let height be h. Draw two perpendiculars from upper two vertices. That forms a rectangle with dimensions(21, h). Let two adjacent sides on base of trapezium be x and (70-x).
    x²+h²=(42) ² __(i)
    (70-x)²+h²=(56) ²__(ii)
    (ii) -(i),
    (70-x) ²-x²=3136-1764
    (70-x+x) (70-2x) =1372
    70-2x=19.6
    2x=50.2
    x=25.2
    Substituting this value of x in (i),
    (25.2) ²+h²=1764
    h²=1764-635.04
    h²=1138.96
    h=33.6
    Area of trapezium=1/2×h×(21+91) =
    1/2×33.6×112
    =112×16.8
    =1881.6 unit²(ans)

  • @syphaxjuba8420
    @syphaxjuba8420 Год назад +1

    merci sire , on peut utiliser le théorème d'Alkashi

    • @PreMath
      @PreMath  Год назад

      Excellent!
      Thank you! Cheers! 😀

  • @alster724
    @alster724 Год назад +1

    That was amazing

    • @PreMath
      @PreMath  Год назад

      Excellent!
      Thank you! Cheers! 😀

  • @emadalkindy2154
    @emadalkindy2154 Год назад

    What if ADE is not right angle triangle

  • @nehronghamil4352
    @nehronghamil4352 Год назад

    Alternate Solution: (Note this solution is identical to that of georgebliss964 but done independently and in a slightly more concise form)
    draw perpendicular line to AB from D to AB at F , h=DF
    draw perpendicular line to AB from C to AB at G , also h=CG
    let AF = a then GB = 91 - 21 - a = 70 - a
    (56 - a) ^ 2 = 42 ^ 2 - (70 - a)^2
    expanding and consolidating terms gives:
    140 * a = 6272
    a = 44.8
    h= [56 ^ 2 - a ^ 2]^.5
    or h = 33.6
    Atrap = 1/2 * (91+21) * h
    =1881.6 sq units

  • @gelbkehlchen
    @gelbkehlchen Год назад

    Solution:
    h = height of the trapezoid.
    I divide the lower side AB into:
    (1) x+21+y = 91 ⟹ (1a) x = 91-21-y = 70-y
    Then according to the Pythagorean theorem:
    (2) x²+h² = 56² = 3136
    (3) y²+h² = 42² = 1764
    (2) - (3) = (4) x²-y² = 1372 |(1a) in (4) ⟹
    (4a) (70-y)²-y² = 1372 ⟹ (4b) 4900-140y+y²-y² = 1372 |+140y-1372 ⟹
    (4c) 3528 = 140y |/140 ⟹ (4d) y = 25.2 |in (3) ⟹
    (3a) 25.2²+h² = 1764 |-25.2²⟹
    (3b) h² = 1764 - 25.2² = 1128.96 | √( ) ⟹
    (3c) h = 33.6
    Area of the trapezoid = (91+21)/2*33.6 = 1881.6

  • @borunzhou2010
    @borunzhou2010 Год назад

    what i did is i took the trapezoid 4 times to make a big square with a small square then i did the area of the big square - area of small square divided by 4 cause i took the trapezoid 4 times.But my answer is different.

  • @xaverhuber2418
    @xaverhuber2418 Год назад

    Strange solution. It seems lighter to draw perpendicular downside from D and C and use the good old Pythagoras ... But why easy when a difficult way is also possible?

  • @zdrastvutye
    @zdrastvutye Год назад

    entweder in zwei dreiecke und ein rechteck zerlegen oder den strahlensatz anwenden:
    ll/21=(ll+56)/91 und lr/21=(ll+42)/91
    und dann gilt sqr(ll^2-lh^2)+sqr(lr^2-lh^2)=21
    bzw.sqr(56^2-lh^2)=sqr(42^2-(21-lh)^2)
    dann hat man ein grosses und ein kleines dreieck und zieht von der fläche des grossen die des kleinen ab. unfortunately i donot get money by doing this

  • @theoyanto
    @theoyanto Год назад +1

    Ah, the parallelogram , the magic ingredient.
    🤓👍🏻

    • @PreMath
      @PreMath  Год назад

      Thanks!
      You are awesome. Keep it up 👍

  • @quigonkenny
    @quigonkenny 10 месяцев назад

    Our goal is to find the height h of the trapezoid as we have all other information to find area.
    By observation, DA and BC have a 4:3 ratio, and AB-CD has a 5:4 ratio with DA. Therefore if we draw DE parallel to BC, AE = 70, EB = 21, and ∆EDA is a 14:1 ratio 3-4-5 Pythagorean Triple triangle and ∠EDA is 90°.
    If we draw DF such that F is a point on AE and DF is perpendicular to AB, as the two resultant triangles ∆AFD and ∆DFE each share an angle with ∆EDA, have a 90° angle at F, and divide the right angle ∠EDA, these triangles are similar to ∆EDA.
    Triangle ∆AFD:
    FD/DA = ED/AE
    h/56 = 42/70 = 3/5
    h = 56(3)/5 = 168/5
    Trapezoid ABCD:
    A = h(a+b)/2 = (168/5)(21+91)/2
    A = 84(112)/5 = 9408/5 = 1881.6

  • @hoppish088
    @hoppish088 11 месяцев назад

    ADE is also a triplet.

  • @thinman2007
    @thinman2007 Год назад +1

    Use cosine rule

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! 😀

  • @JSSTyger
    @JSSTyger Год назад +1

    Assuming the top and bottom lines are parallel, I get A=1881.6

    • @PreMath
      @PreMath  Год назад +1

      Thanks for sharing! Cheers!

  • @adgf1x
    @adgf1x Год назад

    Altitude =33.6 unit.Area of trapizoid=1881.6sq unit

  • @ivanahsan5996
    @ivanahsan5996 Год назад +1

    Who used Heron's formula to calculate 'h' from △ADE 😄😄

  • @shaozheang5528
    @shaozheang5528 2 месяца назад

    You can use algebra

  • @shadowreaper9388
    @shadowreaper9388 Год назад

    What if triangle ADE was not a right-angled triangle?

    • @sandipanbanerjee5010
      @sandipanbanerjee5010 Год назад

      Yes, definitely you could use Heron's formula to calculate the area and the height of the triangle. I failed to notice that. Mistake on my part.

    • @sandipanbanerjee5010
      @sandipanbanerjee5010 Год назад +1

      Need to look for another way.

    • @nineko
      @nineko Год назад

      Heron's formula for the area, then divide that area by 70.

    • @Abby-hi4sf
      @Abby-hi4sf Год назад

      Then you use a method drawing two perpendicular lines from D to side AB call that intersection point F,, and from C to side AB call that intersecion E. Now the Trapezoid is dicvided to one rectangle in middle and right angle triangle at each side of the rectangle. The H is common to all DF = CE = H

    • @yvesdeweirdt65
      @yvesdeweirdt65 Год назад +2

      In this case the formula is
      h² = a² - (( a² - b² + c²)/c/2)²

  • @borunzhou2010
    @borunzhou2010 Год назад

    there are actually 5 ways to do it but 5 different answer why? this problem doesnt make sense.

  • @wackojacko3962
    @wackojacko3962 Год назад +1

    In some rabbit holes there are Rabbits! 🙂

    • @PreMath
      @PreMath  Год назад +1

      Thank you! Cheers! 😀

  • @wasimahmad-t6c
    @wasimahmad-t6c Месяц назад

    33.6×56×1881.6

  • @sheek1982
    @sheek1982 Год назад

    Why not just create 2 triangles to begin with?

  • @bigm383
    @bigm383 Год назад +1

    ❤🥂👍

    • @PreMath
      @PreMath  Год назад +1

      Thank you! Cheers! 😀

  • @faridacumurovic236
    @faridacumurovic236 Год назад

    Not right triangel db 56

  • @wasimahmad-t6c
    @wasimahmad-t6c Месяц назад

    33.6×56=1881.6

  • @raffaeleguerrieri5482
    @raffaeleguerrieri5482 9 месяцев назад

    Formula di Erone , nota l'area ti calcoli altezza.

  • @nurulamin2794
    @nurulamin2794 Год назад

    ভাই, আপনি এই ভিডিওতে মারাত্মক ভুল করেছেন। বিষয়টি হয়তো কারও চোখে পড়েনি। আপনি দুইটি ত্রিভুজের অনুপাত দেখাতে গিয়ে ভুলটি করেছেন। সেটি হল h/b = a/c কখনও হতে পারে না। কারণ h এবং b এর অন্তর্ভুক্ত কোণ α হওয়ায় h ভূমি এবং b অতিভুজ। ফলে আপনার উপস্থাপিত বিষয়টি দাড়াল ভূমি / অতিভুজ। পক্ষান্তরে a এবং c এর অন্তর্ভূক্ত কোণ α হওয়ায় a অতিভুজ এবং c ভূমি। ফলে আপনার উপস্থাপিত বিষয়টি দাড়াল অতিভুজ / ভূমি। সম্পূর্ণ তালগোল পাকিয়ে ফেললেন। যার ফলে আপনার নির্ণয়কৃত উচ্চতা ভুল হয়েছে। প্রকৃত উচ্চতা 39.191835 একক। আশা করি এই ভিডিওর সংশোধনী দিবেন যাতে শিক্ষার্থীরা ভুল শিক্ষা গ্রহণ করা থেকে বাঁচতে পারে। আর উচ্চতা নির্ণয়ের বিষয়টি এত জটিল করার দরকার ছিল না। খুব সহজ এবং সংক্ষিপ্ত।

    • @landmmeasurement3905
      @landmmeasurement3905 Год назад

      He doesn't understood your bengali language.

    • @madhusudangupta3661
      @madhusudangupta3661 Год назад

      ​@@landmmeasurement3905Say " He does not understand ... "

    • @madhusudangupta3661
      @madhusudangupta3661 Год назад

      In my opinion @nurulamin did not understand the complete logic of PreMath. The concept of similar triangles ( all 3 angles being equal ie AAA) does allow this comparison between both triangles.