【入試数学(基礎)】場合の数・確率4 C(組合せ)とは
HTML-код
- Опубликовано: 9 фев 2025
- 区別をなくすシリーズの4つ中1つ目です!3人選ぶだけだと,3人並べるときを考えて,3!で割りますが,その理由をしっかり押さえておかないと,次第にわからなくなりますのでご注意ください!
教材はこちら→ drive.google.c...
------------------------------------
◆前回の動画
• 【入試数学(基礎)】場合の数・確率3 重複順列
◆数ⅠA必須事項まとめ48講座
• 【入試数学(基礎)】数と式1 ルートの計算
◆公式サイト
tadayobi.jp/
◆チャンネル登録
/ @tadayobi-science
◆公式twitter
/ tadayobi_jp
------------------------------------
使用機材:Black Magic Design ATEM Mini Pro
www.blackmagic...
「ただよび」とはRUclips上で受けられる完全無料のオンライン大学受験予備校です。
今日もありがとうございます
シンプルですがコンビネーションは微分公式の導出でも二項定理として登場したり、意外と、と言ったら違うかもしれませんが基礎的な計算としてとても重要ですよね。
今回は計算に慣れるための問題ということで、簡単なものばかりでしたが馬鹿にできないところなので計算ミスしないように頑張ります。個人的に、4!=24として分母側の階乗に、いきなり計算した結果を入れて約分していくやり方が新鮮でした。
確かにその方が約分ミスや掛け算のミスが少なくなるような気がするので、そちらも試してみたいと思いました。
高校生の時、組み合わせはまず公式から覚えて、その公式を使っているうちに「組み合わせって順列の取る数の階乗で割った物」というのが分かってきた記憶があります。
最初からこのように意味を掴んで覚えておくべきだったと思いました。
本日も勉強になりました。ありがとうございました。
ありがとうございます!
Aを含む男5人って、Aさんとその他に男4人という意味か、やっと問題文の意味が理解できた。
Aというグループに男5人、Bというグループ女4人ではないし、(3)がよくわからなかった。
(3)の問題文を分かりやすくしますね。
男5人から、Aと男2人を選ぶ
女4人から、Bを選ばないように2人選ぶ
問題2
の問題文の意味が暫時理解できなかった
分かります。自分もよくわかりませんでした
5人の中に特定のAって男と4人の中に特定のBって女を用意するってこと
@@9時-t9x (3)はAが誰か分からなく、区別できないからAを除いた4人から2人を選ぶ4C2ということですか?
備忘録👏