An Infinite Radical with Powers of 3

Поделиться
HTML-код
  • Опубликовано: 16 дек 2024

Комментарии • 28

  • @yoav613
    @yoav613 11 месяцев назад +19

    Nice.so the result is 9 because the infinite sum is 2 and 3^2=9
    ?

    • @Qermaq
      @Qermaq 11 месяцев назад +2

      Yep.

  • @florianbuerzle2703
    @florianbuerzle2703 11 месяцев назад +6

    Another solution 🙂 Write it as equation x = product 3^(k / 2^k) from 1 to infinity. Then apply the base 3 logarithm to this equation and obtain log₃(x) = sum k (1 /2)^k from 0 to infinty (re-indexing from 1 to 0 does not change the sum). Then evaluate the infinite sum using r/(1 - r)² with r = 1/2 and get log₃(x) = 2 with the final result x = 9.

  • @МихаилДукор
    @МихаилДукор 11 месяцев назад +13

    You forgot that the result is 3^2=9
    You are often hurry to get the result😊

  • @jcfgykjtdk
    @jcfgykjtdk 11 месяцев назад +7

    I got 9

  • @-wx-78-
    @-wx-78- 11 месяцев назад +2

    3:08 Hmm, Wolfram|Alpha answers 2 for “sum n/2**n from 1 to infinity” query. Therefore infinite radical converges to 3² = 9.

  • @xsimox13
    @xsimox13 11 месяцев назад +7

    The solution is 3^2 not 2 ?

    • @SyberMath
      @SyberMath  11 месяцев назад

      I think so 😮

  • @frowe327
    @frowe327 11 месяцев назад +1

    You lost me with the r's...😂

  • @neilmccafferty5886
    @neilmccafferty5886 11 месяцев назад

    very nicely done. bravo!

    • @SyberMath
      @SyberMath  11 месяцев назад +1

      Thank you very much!

  • @demon-ow4vg
    @demon-ow4vg 8 месяцев назад

    Yes

  • @juanmolinas
    @juanmolinas 11 месяцев назад

    👏👏👏 beautifull solution!

    • @SyberMath
      @SyberMath  11 месяцев назад

      Thank you! 😊

  • @MATHUP869
    @MATHUP869 11 месяцев назад

    Thank you Master for your shareing

    • @SyberMath
      @SyberMath  11 месяцев назад

      You are very welcome

  • @lucafumagalli1829
    @lucafumagalli1829 10 месяцев назад +1

    I came to the same result in a very different way.. I put the initial expression=x. Then I squared both sides. Then: 3*sqrt(9*sqrt(27..))=x^2. I "take out" a 3^2 to each radical, getting 9*(sqrt(3*sqrt(9*sqrt(..)))=x^2 so 9x=x^2 which gives x=9... Is that correct?

  • @highlyeducatedtrucker
    @highlyeducatedtrucker 11 месяцев назад

    The WolframAlpha syntax for this:
    product (3^(n/2^n))

  • @scottleung9587
    @scottleung9587 11 месяцев назад

    Nice!

  • @RobG1729
    @RobG1729 11 месяцев назад

    It's a test to see if we're paying attention.
    Maybe there'll be a follow-up to this.

  • @Ron_DeForest
    @Ron_DeForest 11 месяцев назад +1

    Isn’t it just a limit problem? Lim from 1-♾️ 3^[x/(2^x)]

  • @mcwulf25
    @mcwulf25 11 месяцев назад

    Did it like you but the pivotal part I did in reverse - ie multiplying by 1/2 then subtracting.
    Amazingly I also left it at 2 rather than 3^2 😂😂😂 just realised when I read the comments 😳

  • @kuriana100
    @kuriana100 11 месяцев назад

    nice manipulation