An Interesting Polynomial Equation

Поделиться
HTML-код
  • Опубликовано: 14 дек 2024

Комментарии • 11

  • @vacuumcarexpo
    @vacuumcarexpo 2 часа назад +4

    The logo has changed before I knew it.

  • @gregevgeni1864
    @gregevgeni1864 3 часа назад +1

    Great video!
    Thanks for sharing!

  • @black_eagle
    @black_eagle 3 часа назад +3

    The expanded equation is p(x) = x^4 + 4x^3 + 2x^2 - 4x + 1 = 0.
    Notice that (x+1)^4 = x^4 + 4x^3 + 6x^2 + 4x + 1, which has 3 terms in common.
    So p(x) = (x+1)^4 - 4x^2 - 8x = (x+1)^4 - 4x(x+2).
    Let u = x + 1:
    p(u) = u^4 - 4(u-1)(u+1) = u^4 - 4(u^2-1) = u^4 - 4u^2 + 4 = (u^2 - 2)^2
    p(u) = 0 => u^2 = 2 => x+1 = +/- sqrt(2) => x = +/- sqrt(2) - 1.

    • @stephenshefsky5201
      @stephenshefsky5201 2 часа назад +1

      I solved it the same way. Should we call it "completing the quartic"?

  • @BarchinoyG
    @BarchinoyG 3 часа назад +1

    This channel is the best ngl

  • @farhansadik5423
    @farhansadik5423 Час назад

    The logo changing was the biggest plot twist of the year 😭 i loved the old one though

  • @yoav613
    @yoav613 Час назад

    The man and the methods strikes again!😊💥👌💪💯

  • @scottleung9587
    @scottleung9587 Час назад

    Nice - I got the same answers!

  • @dan-florinchereches4892
    @dan-florinchereches4892 3 часа назад

    Did you change the channel icon?
    I think letting u=x^2+1 will transform equation into
    u^2=4x(2-u)
    u^2+4xu-8x=0
    Does not factor nicely so back to brute force if x=tan u
    1/(cos^2u)^2=4sinu/cosu(cos^2u-sin^2u)/cos^2u
    1=4sin u*cos u * (cos^2 u-sin^2 u)
    1= 2sin (2u) * cos(2u)
    1= sin(4u)
    => 4u €{ π/2+2kπ)
    u€{ π/8+kπ/2 | k€ Z}
    x=tan u € { tan(π/8), tan(5π/8) }
    Because the angle between the 2 tangents is 90 degrees when considering them slopes of lines then tan(5π/8)=-1/tan(π/8)
    tan(π/4)=2tan(π/8)/(1-tan^2(π/8))
    If tanπ/8=t then
    1=2t/(1-t^2)
    -t^2-2t+1=0
    t1,2=(-2+-√(4+4))/2=-1+-√2
    Since π/8 is in first quadrant we can accept tanπ/8=t=-1+√2 as solution
    So x €{-1+√2; -1-√2}

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 часа назад

    Se pongo x=tgθ, risulta facilmente l'equazione finale 1=sin4θ...4θ=π/2..θ=π/8..x=tg22,5=√2-1

  • @Don-Ensley
    @Don-Ensley Час назад

    problem
    (1+x²)² = 4x(1-x²)
    Let
    y = 1+x
    x = y-1
    x² = (y-1)²
    The equation becomes
    [ 1+ (y-1)² ]² = 4 (y-1) [ 1- (y-1)² ]
    = 4 (y-1) [ 1- (y-1)² ]
    = 4 (y-1) [1- (y-1)] [1+ (y-1)]
    = 4 y (y-1) (2 - y)
    = -4y (y - 1) (y - 2)
    [ y² -2y+2 ]² + 4y³ -12y² +8y = 0
    y⁴-4y³+8y²-8y+4+4y³ -12y²+8y = 0
    y⁴+8y²+4-12y² = 0
    y⁴- 4 y² + 4 = 0
    (y²-2) ² = 0
    y² = 2
    y = ± √2
    x = y - 1
    = ±√2 - 1
    answer
    x ∈ { -√2 -1, √2 -1 }