LINEAR ALGEBRA COMPLETE SOLUTION CSIR NET DECEMBER 2017

Поделиться
HTML-код
  • Опубликовано: 27 янв 2025

Комментарии • 18

  • @learningteaching4266
    @learningteaching4266 2 года назад +2

    The proof of the last question was awesome 👍
    Thanku sir..

  • @bikashdutta2585
    @bikashdutta2585 2 года назад +1

    Very good explanation of sir🙏🙏🙏

  • @mallikasarmah9088
    @mallikasarmah9088 4 года назад +4

    Thank a lot sir... Your explanation is awesome

  • @AshishSharma-fr3hw
    @AshishSharma-fr3hw 4 года назад +1

    part c last question wonderfully explained! keep it up dude!

  • @koushiklayek2526
    @koushiklayek2526 2 года назад +1

    In question 77 , how do you make the eigen value positive by using Archimedean property ...if kindly explain clearly then it will be very much helpful for me

  • @Sanchita1501
    @Sanchita1501 Год назад

    Last questions approach 🙏🙏🙏

  • @chinmaypadhan5936
    @chinmaypadhan5936 6 месяцев назад

    We can solve q2 in another way.
    the matrix A has Ann_A(x)= x^n -1 and ch_A(x)= x^2-x+1 which has two distinct eigen values hence ch_A(x)=m_A(x) and m_A(x) | x^n -1
    For only n=6 , x^2-x+1| x^6-1.

  • @HarpreetKaur-mf4of
    @HarpreetKaur-mf4of 4 года назад

    can we access private vedio of your channel

  • @sudiptamandal8519
    @sudiptamandal8519 2 года назад

    thank you sir ❤️

  • @vandanabhatt6721
    @vandanabhatt6721 4 года назад

    Sir I think real symmetric matrix is digonolizable ,I don't say anything about symmetric matrix,

  • @ivychatterjee4348
    @ivychatterjee4348 3 года назад

    Excellent

  • @sanjibaneesudha6707
    @sanjibaneesudha6707 4 года назад

    Awesome

  • @amitangshupradhan3532
    @amitangshupradhan3532 3 года назад

    😘

  • @vandanabhatt6721
    @vandanabhatt6721 4 года назад

    Thanks sir

  • @HarpreetKaur-mf4of
    @HarpreetKaur-mf4of 4 года назад

    thanks sir

    • @sushamatambat8873
      @sushamatambat8873 13 дней назад

      In question no.8=Only 1 option is correct because minimal polynomial is of degree 3 not 4 so A is only nilpotent matrix.