LINEAR ALGEBRA COMPLETE SOLUTION OF CSIR NET JUNE 2016

Поделиться
HTML-код
  • Опубликовано: 13 янв 2025

Комментарии • 40

  • @SADDAMHUSSAIN-mw3cv
    @SADDAMHUSSAIN-mw3cv 2 года назад

    Superb thanks alot sir...

  • @agriculturemissionary1166
    @agriculturemissionary1166 Год назад

    Sir, can you please tell the 2 nd question obtain (b) how we can take the A matrix

  • @Ramanarajacademy1986
    @Ramanarajacademy1986 2 года назад

    Question no 14 take v1={√2/2,√2/2} v2={-√2/2,-√2/2} are unit vectors but not orthogonal to each other

  • @priyankakalmodiya4015
    @priyankakalmodiya4015 Год назад

    In question 14 ||^2 =||v||^4 not square

  • @tarunvaishnav9005
    @tarunvaishnav9005 2 года назад +1

    In question 14. In expansion ||² =||v1||^4 because =||v||²

  • @mansityagi38
    @mansityagi38 4 года назад +1

    in the last question, is the matrix A defined on the standard inner product for V?

  • @rohtash43
    @rohtash43 4 года назад +1

    very good teaching....keep it up

  • @piyalikarmakar5099
    @piyalikarmakar5099 3 года назад +1

    the way you described qn 8) is still unclear to me......i can suggest you to write the polynomial in taylor series form and ||p||k defined here satisfies all property of norm and then you can get option c) that is k>=d and NOT k>d because why should we should only with 0's it doesn't work that way.

  • @aarthyuma4282
    @aarthyuma4282 4 года назад +2

    Thank you so much for this explanation. I've a doubt sir. In last que opt 3 it is given that for all v in R^n. If we choose v=0 then we'll be getting q(x)=0 right? Is that means there is an eigenvalue equals to 0?
    If so, how can be det A is strictly greater than 0.
    Thank u in advance

  • @rajadutta1047
    @rajadutta1047 4 года назад +1

    Very well explained sir ..it's really great helpful

  • @bhavithramanikandan7726
    @bhavithramanikandan7726 4 года назад +1

    Nice videos. Can you give lecture for abstract algebra, real and complex analysis

    • @mathematicalPathshala
      @mathematicalPathshala  4 года назад +1

      Real analysis and abstract algebra are available in our application
      play.google.com/store/apps/details?id=co.lynde.unflv

    • @bhavithramanikandan7726
      @bhavithramanikandan7726 4 года назад

      @@mathematicalPathshala thank you sir

  • @amurawat8187
    @amurawat8187 4 года назад +1

    Well explained

  • @sabyasachighosh8237
    @sabyasachighosh8237 4 года назад

    Please start a full course for csir net

  • @kmpoojamaurya4549
    @kmpoojamaurya4549 3 года назад

    Thanku so much sir

  • @harekrishnamishra4321
    @harekrishnamishra4321 4 года назад +1

    Q no 13 is not correct explanation

    • @mathematicalPathshala
      @mathematicalPathshala  4 года назад

      Ohk give me the explanation where i am doing wrong

    • @harekrishnamishra4321
      @harekrishnamishra4321 4 года назад

      Ax=0 iff x=0 how?
      Symmetric properties se solve hoga.
      (Ax,Ay) =(Ay ,Ax)
      We know (Ax,Ay) = (x,A^tAy) use for both sides we get AA^t=I
      So A is invertible

    • @mathematicalPathshala
      @mathematicalPathshala  4 года назад

      Can u explain why (Ax,Ay)=(x,A^TAy)?

    • @harekrishnamishra4321
      @harekrishnamishra4321 4 года назад

      @@mathematicalPathshala (Ax,y) =(Ax)^t Y (for usual inner product)
      =x^t A^t Y=(x,A^ty)

    • @mathematicalPathshala
      @mathematicalPathshala  4 года назад

      That i also know but in the given question they have not given that this is standard inner product(usual inner product) so we can not use this is always(bcz usual inner product is a part of inner product and every inner product is not usual hope you get my words)

  • @pooja1995jain
    @pooja1995jain 4 года назад

    Sir aapne part c ka que no. 66 solvve ni kiya

  • @bhadravarma6648
    @bhadravarma6648 4 года назад +1

    In the last problem u said that = v^t Av. From where do get that ..

    • @mathematicalPathshala
      @mathematicalPathshala  4 года назад

      It comes from the matrix representation of inner product

    • @bhadravarma6648
      @bhadravarma6648 4 года назад

      Can you help me to know how inner product is expressed in terms of matrix....

  • @zahidgeelani44
    @zahidgeelani44 4 года назад

    Sir i want to join ur whatsap group..

  • @Sureshiru
    @Sureshiru 4 года назад

    Explain in English sir.

  • @brijeshdubey8958
    @brijeshdubey8958 4 года назад +3

    Not good