Mastering Algebra Challenge- With a Twist!

Поделиться
HTML-код
  • Опубликовано: 23 дек 2024

Комментарии • 10

  • @ManojkantSamal
    @ManojkantSamal 6 дней назад +1

    Ans ::272286..May be
    Explain later
    ^=read as to the power
    *=read as square root
    Let x=a, b=(1/x)
    So, ab=1....eqn1
    As per question
    a^3+b^3=18.......eqn3
    (a+b)^3-{3ab(a+b)=18
    (a+b)^3-3(a+b)=18..(ab=1)
    Let a+b=R
    So,
    R^3-3R=18
    Though cubic equation so H&T for bagging the first root
    Let R=3
    R^3-3R=(3^3)-(3×3)
    =27-9=18
    So R=3
    a+b=3......eqn2
    Let a+b=R
    Now,
    a^5+b^5=(a+b)^5-[5ab(a+b){(a+b)^2-ab}]
    So,
    a^5+b^5=(3^5)-[(5×3){(3^2)-1}]
    =243-{15(9-1)}
    =243-(15×8)
    =243-120
    =123
    Now,
    a^10+b^10 =(a^5+b^5)^2-(2×a^5×b^5)
    =(123)^2 - 2
    =15129 -2=15127
    So,
    (X^10)+(1/x^10)=15127......eqn4
    Eqn3 ×eqn4
    {X^3+(1/x^3)}{x^10+(1/x^10)}=15127×18
    So,
    {X^3×(x^10)}+{x^3×(1/x^10)}+{(1/x3)×x^10}+{(1/x^3)×(1/x^10)}=272286
    So,
    (X^13)+(1/x^7)+(x^7)+(1/x^13)=272286
    So,
    (X^7)+(1/x^7)+(x^13)+(1/x^13)=272286......

  • @Fjfurufjdfjd
    @Fjfurufjdfjd 7 дней назад +1

    Ε=272286
    χ+1/χ=3 , χ^2+1/χ^2=7 , χ^3+1/χ^3=18 , χ^4+1/χ^4=47 , χ^7+1/χ^7=843 , χ^6+1/χ^6=322 , χ^13+1/χ^13=271443
    Ε=843+271443=272286

  • @Shobhamaths
    @Shobhamaths 7 дней назад +2

    I too got same answer 272286

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 5 дней назад

    x³+(1/x³)=18 --> x>0
    [x+(1/x)]³=x³+(1/x³)+3[x+(1/x)]
    =18+3[x+(1/x)]
    [x+(1/x)][{x+(1/x)}²-3]=3(3²-3)
    x+(1/x)=3
    x²+(1/x²)=[x+(1/x)]²-2
    =7
    x³+(1/x³)=18
    x⁴+(1/x⁴)=[x²+(1/x²)²-2
    =47
    x⁷+(1/x⁷)=[x³+(1/x³)][x⁴+(1/x⁴)]
    -[x+(1/x)]
    =18(47)-3
    x⁵+(1/x⁵)=[x²+(1/x²)][x³+(1/x³)]
    -[x+(1/x)]
    =7(18)-3
    x⁶+(1/x⁶)=[x³+(1/x³)]²-2
    =18²-2
    x¹³+(1/x¹³)=[x⁶+(1/x⁶)][x⁷+(1/x⁷)]
    -[x+(1/x)]

  • @gregevgeni1864
    @gregevgeni1864 7 дней назад

    272286

  • @Quest3669
    @Quest3669 7 дней назад

    X+1/x= 3; x^6+(1/x)^6= 322; x^7+(1/x)^7=843 hence
    ?= 271443+843= 272286 soln

  • @neerajgupta7856
    @neerajgupta7856 6 дней назад

    272286