What's the FASTEST Way to Master MATH in 2024? | Radical Equations

Поделиться
HTML-код
  • Опубликовано: 23 дек 2024

Комментарии • 7

  • @gregevgeni1864
    @gregevgeni1864 2 дня назад

    Another approach.
    The given equation is equivalent to
    ³√(27-x²) +(-³√8) + (-³√(1-x²) = 0 or
    A + B + C = 0 (1) ,
    A=³√(27-x²), B=-³√8 , C=-³√(1-x²) (2)
    From (*) => A³+B³+C³=3 ABC (3).
    The (3) due to (2) rewrite as
    (27-x²)+(-8)+(-(1-x²))=
    3•³√((-8)(27-x²)(-(1-x²))) =>
    6=³√(8(27-x²)(1-x²)) =>
    216 = 8(27-28x²+x⁴) =>
    x⁴-28x²=0 => x²(x²-28)=0 =>
    x = 0 , x = ±2√7

  • @gregevgeni1864
    @gregevgeni1864 2 дня назад

    x = ±2√7 , x = 0
    The given equation is equivalent to
    ³√(27-x²) = 2+³√(1-x²) (1)
    Let t=³√(27-x²) => t³=27-x² (2).
    r=³√(1-x²) => r³=1-x² (3).
    From (1), (2),(3) =>
    t=2+r and t³-r³=26 .
    Solving the system we have
    r=-3 or r=1 .
    From (3) and r=-3 => ³√(1-x²) =-3 =>
    1-x²=-27 => x²=28 => x=±2√7.
    From (3) and r=1 => ³√(1-x²)=1=>
    1-x²=1 => x=0.

  • @潘博宇-k4l
    @潘博宇-k4l 2 дня назад

    X1=0, X2=+,-(28)^(1/2)=+,-2(7)^(1/2).

  • @Fjfurufjdfjd
    @Fjfurufjdfjd 2 дня назад

    χ=0 (διπλη) ή χ=+ 2(7)^(1/2) ή χ=-2(7)^(1/2).

  • @ManojkantSamal
    @ManojkantSamal 2 дня назад

    ^=reas as to the power
    *=read as square root
    As per question
    {2+(5+x)(5-x)}^(1/3)=2+{(1+x)(1-x)}^(1/3)
    So,
    {2+25-x^2}^(1/3)=2+(1-x^2)^(1/3)
    (27- x^2)^(1/3)=2+(1-x^2)^(1/3)
    (27-x^2)^(1/3)-(1-x^2)^(1/3)=2
    Let( 27-x^2)^(1/3)=R, (1-x^2)^(1/3)=L
    So,
    R-L=2
    RL={(27-x^2)(1-x^2)}^(1/3)
    ={27-27x^2-x^2+x^4}^(1/3)
    =(x^4-28x^2+27)^(1/3)
    Now,
    (R-L)^3=R^3-L^3-3RL(R-L)
    2^3={27-x^2-1+x^2}-3RL(2)
    8=26-6RL
    -6RL=8-26=-18
    RL=-18/-6=3
    (RL)^3=3^3=27
    X^4-28x^2+27=27
    X^4-28x^2=27-27=0
    X^4-28x^2=0
    X^2(x^2-28)=0
    So,
    X^2=0 or x^2-28=0
    X=0,or x^2=28
    Now x^2=28
    X=*(28)=2.*7
    Hence
    X=0 or 2.*7

  • @RajeshKumar-wu7ox
    @RajeshKumar-wu7ox 2 дня назад

    X=0,2√7 ,-2√7