[18강-3][고1][심화] 경우의수-색칠하는 방법의 수-완벽정리 (+예제6문제)
HTML-код
- Опубликовано: 10 ноя 2024
- #경우의수 #색칠 #방법의수
자기주도형부터 정규반까지.
갑쌤의 노하우가 모두 담긴 맞춤형 학습을 경험해보세요!
자세히 알아보기 : m.site.naver.c...
깝스매스 구독자는 정규반 2주 무료 ✨부담 없이 시작해보세요.
카카오톡 문의 : bit.ly/3Ip7HuS
깝스매스 X 클럽스터디에서는?
1️⃣ 자기주도형 스터디
① 진도 관리 : 커리큘럼별 학습 진도표
② 과제 관리 : 매일 매일 꾸준히 / 줌 독서실
③ 질문 관리 : 모르는 질문, 그때 그때
④ 확인 TEST : 미처 파악하지 못한 나의 약점을 파악
⑤ 실시간 수업 : 매주 2시간, 현강 수업을 통한 문제 풀이/실전 개념 정리
2️⃣ 정규반 스터디
자기주도형의 모든 서비스 포함! + 갑쌤이 직접
① 매일 매일의 학습량을 정해주고, 진행 상황을 확인합니다.
② 상황에 따라 나에게 맞는 학습 전략, 진도를 수립합니다.
③ 내가 질문한 내용에 대한 피드백을 제공합니다.
1:1 첨삭을 통해
④ 나의 부족한 점을 찾아주고. 어려워하는 부분들을 정리해줍니다.
⑤ 어떤 방식으로 해야 하는지 더 효율적으로 공부할 수 있는지 상담해주며,
⑥ 제대로 연습이 되었는지 ‘직접’ 확인까지 해줍니다.
weareclubstudy.com
--
(현) 목동 🍎 사과나무 학원 고등부 수학강사
(현) 🅲 클럽스터디 티처
(현) 유튜브 채널 : 깝스매스
(전) 콴다(Qanda) 비디오 튜터
(전) 수원 이룸학원 ∞ 고등부 수학강사 & 고등부 팀장
(전) 수원 이앤수학원 고등부 수학강사
(졸) 🍃성균관대 바이오메카트로닉스 & 전자전기공학부
인스타그램 : / ggabsmath
이메일 : ggabsmath@gmail.com
쌤은 여러분이 몰랐던 걸 이해했을 때의 표정을 너무 좋아합니다!
그 표정을 또 보고 싶어서 매일 매일 정성스럽게 설명을 준비해요.
확실히 이해할 수 있게 차근 차근 친절히 알려드릴게요!
저는 깝스매스 갑쌤입니다.
'깝스매스 DLC' - 깝스매스 멤버십에 가입해보세요!
멤버십 수익은 채널을 운영하는 운영비로 사용합니다.
멤버십 : bit.ly/깝스매스DLC
자기주도형부터 정규반까지.
갑쌤의 노하우가 모두 담긴 맞춤형 학습을 경험해보세요!
자세히 알아보기 : m.site.naver.com/1h9Ww
깝스매스 구독자는 정규반 2주 무료 ✨ 부담 없이 시작해보세요.
카카오톡 문의 : bit.ly/3Ip7HuS
수학 하에서 개인적으로 순열과 조합보다 함수가 더 재밌었다는..
저도 첨엔 함수가 재밌었는데.. 순열 조합도.. 하다보면 재밌어지더라고요
거의다 그럴걸요...
와 미친 ㅈㄴ 인정합니다 함수배울땐 그냥 어렵다였는데 순열조합 문제보고 이마퍽침시발ㅜㅜ 이해존나존나 못하겠늠;;;
@@ggabsmath ㅇㅈ
머리굴릴바에 그냥 생각없이 문제푸는 함수가 훨씬 좋음
와 감동적이다……..진짜 감사해요…어디에서도 이유를 안알려줘서 결국 외워야하나 우울해하고있었는데…
우와~ 혼자 공부하는 입장에서 진짜 도움 되는 영상이에요♡♡ 말투가 나긋나긋하셔서 집중이 잘 되네요♡♡ 유익한 영상 고맙습니다!
ㅎㅎㅎ 도움이 되셨다니 저도 기분이 좋습니다!^^ 홧팅이에여~
가끔씩 실수하고 조금은 어려웠던 부분인데
이해가 잘 되게 설명해주셔서 좋았습니다. 학원을 다니지 않는 저에겐 선물같은 동영상이네요.^^
감사합니다~
말하시는게 천상 강사시다 쏙쏙 들어옴ㅋㅋㅋㅋ
쏙쏙!ㅋㅋㅋ 배워가세옹
가장 까다로운 조건부터 작업했네요
이산수학의 첫번째 원칙을 잘 지킨 설명이네요
가장 인접힐것이 많은 것부터 생각한다라고 설명하는것보다 가장 까다로운것부터 작업한다 설명하면 다른 이산수학문제에서도 적용 시킬 수 있었을텐대 아쉽네요
Jun Hyeong Kim 좋은 의견 감사드려요~ 좀 더 고민해보도록 하겠습니다~ ^^
안녕하세요! 중2 학생입니다. 학교에서 저 문제들 중에 4개로 나눠진 걸 색칠하는 경우의 수 문제가 나와서 해결하고 싶은 마음에 검색 해보았는데 이제는 응용해서도 잘 풀 수 있을 것 같아요!! 너무너무 감사합니다 ㅎㅎ
ㅎㅎㅎ 별말씀을용! 그렇게 적극적으로 알아보는 거 너무 좋습니다~ 앞으로 점점 수학 잘해지실거에요! 👍👍
색을 abc로 하시면 가짓수와 덜 혼동될것같아요
선생님 설명 너무 좋아요
구독합니다
그러네요~ 다음번에는 abc 로 해봐야겠네요~ 좋은의견 감사합니다! ^_^
오... 경우의수 색칠 어려워 했는데 바로 이해갔어요~~
감사합니다
이해 되었다니 다행입니다! 홧팅이여요!^^;;
내 마음으로는 선생님이 전국 최고 1타 강사입니다🥰
헤헤헷 ❤️
학원에서 몇십분동안 물어봤는데 또 물어보면 혼날꺼같애서 찾아봤는데 한번에 로또맞음... 너무 감사해여 ㅠㅠㅠㅠ
헉 한번에 이해가 되셨다니 다행이네요! ㅎㅎㅎ 저도 사실 여러번 설명하는 예제중하나라서~^^;; 그래도 확인은 꼭하셔야합니다!^^;;
중2 수학에 나와서 찾아봤는데 이런 경우들도 있었군요.. 설명도 너무 친절하시구 감사합니다
ㅎㅎ 자주 오셔요!
와우 이렇게 아름다운 수학
모르는거 이해할때마다 수학이 재밌어지네요ㅠㅠ 쌤 감사합니다 그리고 쌤 잘생겼어요ㅠㅠㅠ
이 맛에 수학공부하는거 아닙니까!ㅎㅎ 앞으로 분명히 점점 더 수학 잘해지실겁니다! 😄(잘생겼다고 해서 이런말 하는거 아님)
감사합니당❤
이 부분 이해가 안가서 문제를 많이 틀렸는데 영상보고 이해가 잘 됐어요!!감사합니다
7:30 내가 찾던 부분
와 정말 최고에요… 선생님 영상을 만나서 완전 영광입니다❤
와 진자ㅡ감사하빈다….
우와 덕분에 색칠하기문제 완벽이해된듯해요 샘스탈 설명법 딱 맘에 드네요
ㅎㅎㅎ 자주 와서 공부하고 가세용~^^
깝스매스 쌤의 10만 조회수
동영상을 축하드립니다🎉
헉 저도 몰랐는데! 10만이라니.. 축하 감사드랴요! 😆😆
그니까.. 맞닿아 있지 않아서 같은 색을 칠할 수도 있는 쌍이 2개면 한 쌍을 골라서 같은 경우 다른 경우 나눠푸는식으로 풀라는거죠?
구분을 도저히 못하겠어서 미칠거같았는데 감사합니다
오오 님 댓 보고 더 이해가 잘 됐어용
설명잘했네
중2 경우의 수에도 나오는건데 참고하겠습니다~~감사합니다~~
유시현 네~ 중2 수학에 나오는 문제도 똑같을거에요~~^^ 홧팅입니다~
구독누르고갑니다...덕분에 정말 도움되었슴다
감사합니다
내일 시험인데 알려주셔서
정말 감사합니다ㅠㅠ
선생님 질문있어요
네번째 그림에서
B,D를 먼저 지정하셨는데
A=C와
A같지않다C로 나누어서 풀어도 되지않나요??
와 설명 너무 깔끔하시다
헤헷 마음에 드셨나요..? ㅎㅎ
궁금한게 A, B, C, D, E중에 만약 C가 아닌 다른 영역을 먼저 선택해도 결과는 똑같은 건가요?예를 들어 B를 선택해도 결과는 같은건지 궁금합니다.
시험 두시간 남았는데 이거 들어서 다행입니다 계속 지도 칠하는 거만 틀렸는데 이제 확실히 알겠네요
감사합니다ㅠㅠㅠ 덕분에 해결 됐어요!! 구독하고 갈게요! 그런데 하나만 궁금한거 여쭤봐도 될까요..? 만약에 마지막 모의고사 문제가 같은 조건에서 A=E일 경우를 구하라고 하면 18가지 나오는거 맞나요...?
중2인데 저거랑 똑같은거 배워서 보러왔습니다,, 감사합니다 !!
맞아요~ 중2 때도 나오는 문제입니다! 한번할때 제대로 이해해두면 앞으로 두고두고 편해요! 중학교때 수학이 진짜 중요합니다! 특히 도형쪽 진짜 열심히 해두세요....
아 진짜 잘 가르치시네 감사합니다
와 진짜 하나도 모르겠어서 머리아팠는데 이거보고 다 이해됐어요 감사합니다ㅠㅠㅠ
오....이거 n칸까지 일반화시킨 공식도 있는데 그것도 소개시켜주시면 더 좋았을 듯 해용
오 그런가요? 저도 나중에 시간이 되면 확인해봐야겠네요~ 좋은 정보감사드립니다!
꺅 드디어 이해 됐어요... 이거때매 사방팔방 다 물어보고 다녔는데ㅠㅠ
자주 와서 공부하고 가셔욤~~^^
감사해요 !!
안녕하세요! 중2 학생인데 혹시 a=c, a/=c 를 써야하는 경우를 구분하기 어렵다면 그냥 모든 문제에 a=c, a/=c로 구분해서 풀어도 되는건거요…? 굳이 안나누고 1,2번처럼 바로 구할 수 있는 문제도요!
두 상황을 구분하시는게 헷갈리셔서 그러는 군요… ㅋㅋㅋ 가능은 합니다만 결국엔 구분해 내셔야 하긴 할거에요.
@@ggabsmath 감사합니당 시험에 나오면 꼭 맞을게여..ㅎㅎ
A랑 B랑 색이 같고 C랑 D 색이 동시에 같을 순 없나요 예를 들어 A,B=빨,C,D=파
인접한 부분은 색이 다르다고 가정했을 때를 설명한거라서 A B가 같을 수 없어요
와...진짜 궁금했던 핵심을 알려주시네요 감사합니다!
헐 이해됨 감사합ㄴ다ㅎㅎ
와 바로 이해갔어요 짱이다
ㅎㅎㅎ 감사합니다!
영상보니까 한번에 이해했어요!! 좋은영상 감사합니다🥺🥺!!
굳굳! 😊👍
쌤최고에요.
학원샘이 3번째 유형 푸는공식만 알려주고 왜 경우를 나눠서 푸는 지 안 알려주셔서 답답했는데
샘 덕에 해결됏아요
ㅎㅎㅎ 도움이 되었다니 저도 기분이 좋네요!! ^_^ 앞으로도 자주 들러주세용~ ^_^
A부터 차례대로 올수있는 색깔을 생각하지 않고 인접하는 부분이 많은 B부터 경우를 생각하는 이유가 무엇인가요...?
세번째 유형 나를 미치게 만드네 진짜 이시바라다
이시바라?? …. ㅋㅋㅋㅋㅋㅋㅋ 한참 고민했네요.. ㅋㅋㅋㅋㅋㅋㅋ 진정하세요
설명잘듣고갑니다ㅠㅠ 근데 혹시 밑에같은 질문들/이 있긴하지만...이해가 안되서 질문합니다..abcd네 구역에서 a,c가 같은 경우, 다른 경우로 나누어서 푸는 데 왜 b,d는 안해도 되는 건가요? ㅠㅠ
사실 이걸 확실히 이해하시려면 직접 수형도를 그려보시는 게 좋아요~ 그래야 왜 경우를 나눠야 하는지 그리고 둘다 나누지 않아도 되는지 확실히 알수 있습니다~ ! 조금 늦은 답변이지만 한번 꼭확인해보셨으면 좋겠네요~
10:30문제 있잖아요, b,d따져주면 a, e는 따로 또 따져야되지 않나요?
음.. b, d 를 기준으로 따져쥬면 a,e 가 같을때와 다를때가 모두 세진답니다~그래서 따로 안세주서도 괜찮습니다~~^^;;
@@ggabsmath 왜 인지 이해가 안되요
@@chonttigi 직접세보세요 이해되요
8:05 B랑 D도 맞닿아있지 않는데 그럼 BD가 같을때랑 다를 때도 나눠서 풀어야하는거 아닌가요?
해당 설명에 관한건 순서에 관한 부분을 조금 이해하시면 좀 더 확실히 이해하실수 있을거에요~
ruclips.net/video/cUELwhMKNoQ/видео.html
요 영상을 참고해보시면 아마 이해가 되실것 같아요!
9:17 A=C , A=/C( A와 C 다름) 로 나누어 푸는 게 4개 중에 2쌍이 둘다 서로 맞닿아 있지 않은 경우에 그렇게 풀어야 하는건가요
네~ 그렇습니다~
@@ggabsmath 네 감사합니다 ~
마지막 모의고사 문제요 (1) B=D 일때 3x2x2x2 해서 24가지이고 (2) B와D는 다른 색깔일 때는 3x2 B는 D랑도 다른색이고 A랑도 다른색이므로 1가지 D도 마찬가지로 E랑도 다른색이고 B랑도 다른색이여야 하므로 1가지 해서 6가지 이므로 (1)+(2)= 30가지 맞나욤??????
네~ 맞습니다. 다만 제일 위에칸과 제일 아래칸 색깔을 먼저 정하시면 좀더 편하게 경우를 셀수 있어요~
13:15 인접한 게 많은 C부터 시작했을 때는 답이 다르게 나오는데 그렇게 되면 인접한 것부터 시작한다는 애초의 규칙과는 다르지 않나요??
그런가요? C부터 출발해도 같은 경우의 수가 나와야 합니다! ( 뭔가 빠진부분이나 혹은 중복된 부분이 없는지 확인해보셔야 할것 같아요) 사실 인접한 곳이 많은곳 부터 시작하는건 좀 더 편하게 세기 위함입니다! 인접한 곳이 많지 않은곳에서 출발해도 같은 경우의 수가 나옵니다!)
즉, 어디서부터 세도 제대로 셌다면 그 경우의 수는 같게나옵니다!
야무지네요
헤헷😁 감사합니다.
세번째 그림에서 원순열이 적용될
여지가 있는건 아닌지요???
그건 문제에서 제시된 조건에 따라 다를것 같습니다! 해당단원은 고등수학 하에서 경우의수 단원이라 원순열에 대해서는 고려하지 않습니다! 보통 원순열 문제는 옆에 (단 회전에서 같으면 같은경우로 센다) 요런식의 코멘트가 붙어 있습니다~ 제 기억에 원순열단원에서도 비슷한 문제가 있었던 것 같아요…. ㅎㅎㅎ
질문 하나만 드려도 될까요?
35개의 상자가 있어요
집는 상자에서 나온 수를 다 곱해서 나온수들은 더한값이 가장 크려면 어떻게 해야하나요?
각 상자에는 들어있는 것은 0 과 1.5 가 들어있는데요
35개의 상자중에 3개가 0 이 들어있고 32개에 1.5 가 들어있어요
집은 상자가 1.5 와 0이면 그 시도는 0이 되고
1.5 1.5 1 .5 를 다 집어도 4개를 집기로 마음 먹어서 마지막에 0을 집으면
0 이 됩니다.
1.5 와 1.5를 집으면 2.25가 됩니다. 둘을 서로 곱하니까요
그렇게 상자를 다 집어서 가장 큰 수를 확률 적으로 만드려면 어떻게 집어야 하나요?
한번에 최소 두개의 상자를 집어야 하고 최대 10개의 상자를 집을수 있다고 할때
(횟수 제한은 없음)
쌤 이때 엄청 젊어보여요
이때 젊었어요…………..ㅠㅠ
9:04초에서 A랑 C랑 같을 때 경우의 수가 달라지고 다를 때도 달라지니까 나눠서 풀어야하지 않나요??
답은 똑같이 나옴
처음 배울때 수형도로 배우면 이해가 빡 되던뎅
맞아요! 수형도 한번 그려보면 따학
설명 너무 너무 잘하세요…
감사합니다! 더 열심히 하겠습니다!😊
벌써 2년전 강의라 대답해 주실지는 모르겠지만 ..
그 A=C , A=/C로 풀 때 B=D , B=/D는 왜 같이 안보나요 따지고 보면
A=C,B=D일때 A=C, B=/D일때 A=/C,B=D일때 A=/C,B=/D일때로 나누어서 풀어야 하는 거 아닌가요 ㅜㅜ
순서에 관한 얘기를 조금 먼저 이해하시면 좋을것 같아요! 제가 해당 질문에 관한 설명을 해놓은 영상 링크를 첨부 해놓을게요~ 한번 참고해보세요!
ruclips.net/video/Ry6IbC9GP78/видео.html
제가 강의를 이해하지 못한거 같긴한데.... 그 가장 많이 인접한 면을 먼저 칠하는 이유는 먼가요?
마지막 모의고사 문제때 맨위랑 맨아래랑 색깔이 같을때는 고려하지않나요?
조건 중에 맨 위와 아래는 다른색깔이라는 조건이 있습니다!
쌤 사랑해요
저두요..헤헷
왜 하필이면 a하고 c가 비교대상이되어 인접해있다 인접해있지 않다를 논하는 건가요 비교대상이 가장 많이 인접한 것인가요 정확한 설명 부탁드려요
음 제가 a 부터 출발해서 세서 a 와 c 를 기준으로 잡은거 인데요~ 만약에 b 부터 출발해서 셌다면 b 와 d 를 기준으로 잡으면 됩니다~ 그리고 두가지 경우 다 같은 경우의 수가 나오게 돱니다~ 다만 한쌍이 인접한 경우는 인접한거를 먼저 세는게 경우를 나누지 않고 셀수 있어서 좀 편하게 셀수 있구요~ (물론 b 부터 세도 됩니다만 그러면 그경우는 b=d가 같을때 다를때를 나누어서 풀어야 합니다~) 두쌍이 다 인접하지 않는다면 누구로 출발하든 같을때 다를때로 경우를 나누어야 하기때문에 a,c로 경우를 나누든 b,d 로 경우를 나누든 크게 상관이 없습니다.. 댓글로 설명을 하려니 쉽지는 않네요.. ㅠ 이해가 됬을지 모르겠네요
강서고인데 시험역대급으로 어려워서 망친듯요 ㅠ 하 3등급은 나올지 ....
이번에 저희 수학부담임쌤이 다 푸는데 3시간 걸렸대요 ㅋㅋㅋㅋㅋㅋㅋㅋ
ph-1 헐 시험이 많이 어려웠나봐여;; 부담임쌤이 3시간 걸릴정도면.. 일단은 너무 상심마시고 남은 시험에 최선을 다하세요~ 그리고|나서 시험이 끝나면 시험지를 다시 꺼내어 찬찬히 다시 보시면서 어디까지 공부해야 시험을 잘 볼수 있을지를 고민해 보셔야 합니다~ 그리고 어려운문제까지 공부할수 있게끔 미리 학습계획을 잘 정리해두셔야 합니다! 다음번엔 좋은결과가 있으셨음 좋겠네용~~
이번 수학평균 35점이래요 하..
감사합니다 ㅠㅠ
중2 과정에서도 비슷한 문제가 나오는데 아예 이해를 못해서 너무 힘들었는데..
덕분에 200% 이해하고 갑니다 ㅠㅠ
별말씀을요! 😁 저도 덕분에 전기차 구경 잘하고 있습니다…..(헉…🤭)
그리고 중3이 되서 수 하를 공부하러 다시왔습니다 ㅋㅋ..
질문있습니다. 왜 인접한 부분이 가장 많은 부분부터 색칠해야 하는 건가요?
그래야만 하는 이유나 정당성이 있다면 설명해주시면 감사하겠습니닷. 너무 궁금해요!!
임지훈 꼭그래야만 하는건 아니에요~ 다른부분부터 칠해도 됩니다~ 다만 경우의수가 더 복잡하게 나올수 있어서 가장 많은 부분부터 칠하는게 편합니다~ 두번째 예제 (b,d 만 이웃하지 않은 경우) 를 b부터 시작해서 수형도 그려가면서 한번 경우의수를 구해보시면 그 이유가 납득이 되실것 같아요~
4:58 에 똑같은거면 똑같은게 2개 있다고 보면 되니까 ×1이 아닌 2가 되어야 하는거 아닌가요? 1이 되는 이유가 있나요?
A와 C 에 같은색깔로 1,2,3,4 번 색깔을 칠하는 경우 총 4가지 인데요. 이걸 따로 쪼개서 생각해보면 먼저 A 에 색칠할수 있는 경우가 4가지, 그 다음 C는 A가 칠한색깔을 그대로 골라야하니까 고를수 있는 경우가 1가지 즉 4*1로 표현한 것입니다~
10:48 문제에서 A=E A,E 같지X 로 풀면 안되나요?
됩니다! 둘중 하나로 하시면 됩니다!
선생님 따지는 두 문자를 a나c 아님 b나d 중 아무거나 해도 되는건가요??
네 둘중에 암거나 하나 하시면 됩니다!
2:16 C와 D가 인접해 있지 안나요?
네~ c와 d는 인접해 있고요~ a와 c가 인접하지 않은 상태입니다!
선생님 맞닿아있지않은상황에서 왜 하나의경우의수가 1인가요?
8:55 여기 bdca 말고 abcd로 하면 답이 다르게 나오는데 어떻게 풀죠 ..?
순서를 바꿔서 해도 경우의수는 같게 나와야 합니다!
요 영상을 한번 확인해보시면 좋을것 같아요!
(일부러 순서를 뒤집어서 풀어서 설명하는 문제들이 있습니다!)
ruclips.net/video/Ry6IbC9GP78/видео.html
이거지!!!
ㅎㅎ 이해되셨나요!ㅎㅎ
혹시 저 예시문제 어느 문제집에 나와있나요??
아마 마플시너지 였던것 같습니다!
2번째 그림에서 B,D는 서로 맞닿아있지 않는데 그건 상관이 없나요ㅠ?
아 두 부분중 한 부분만 맞닿아 있으면 경우를 다시 나눌필요가 없는건가요?
조아요^♥^
쌤
감사합니다! 😁
바람개비문제는 어떻게푸나요?
김세용 바람개비 문제는 원순열문제였던것 같은데~ 고1 수학에서는 범위가 아닌걸로 알고 있습니다~
김세용 문제조건이 자세하게 기억 나지는 않지만 색깔의 개수를 먼저 정해서 사용하는 색깔개수별로 회전해서 같아지는 경우를 고려해서 셌던걸로 기억나는데~ 저도 가물가물하네여 ㅠ
감사해용
8:40 이 문제 바로 전과는 다르게 이 문제는 맞닿아 있지 않은 쌍이 2개가 되지 않아서 색이 같을때랑 다를때 구분을 하지 않아도 되는건가요?
네 사실 저 경우도 순서를 a와 c를 먼저 하면 경우를 나눠서 풀어야 합니다! 다만 b와 d 가 맞닿아 있기 때문에 b d 부터 풀면 좀더 쉽게 경우의 수를 셀수 있습니다!
세는 순서를 바꿀때 일어나는 경우에 대한 설명은
아래 영상을 확인해보시면 좀더 확실히 이해하실수 있을거에요!
ruclips.net/video/Ry6IbC9GP78/видео.html
아주잘봤습니다..다만 말투가 현*진 강사랑 너무 비슷하네요 ㅎ
juyoung ko 오 그런가요?? 현우진쌤도 좋아하지만.. 저는 한석원쌤 왕팬이거든요ㅠ
??:안녕하심깐걱원임다 자 오늘은 엑썰싸이즈 삼번 함섹펙스가
학원강사TV ㅋㅋㅋㅋㅋㅋㅋ 뭔가 음성지원 되는 느낌인데여..! ㅋㅋㅋ
8:11
쉽다
굳!입니당
하얀트리 닮았어요
네.. 저도 보고 조금 놀랐어요… ㅋㅋㅋ 저도 맛있게 먹는건 자신 있는데! ✌️
마지막 색칠하는거 수형도로 해두 되나요...?
구리구리 그럼요! 다쓰지 않아서 그렇지 저 방식이 사실은 수형도로 푸는거에요~~ ^^
12:00
선생님 위에줄 2번째 경우의수에서 BD안붙어있는데 같을때와 다를때 하니까 같을때 4132해서 24 다를때 4321하고. 더하면 답이 더 크게 나와요....
뭐가 잘못된건가요?
왕재민 24+24 하면 48 가지 맞게 나오는거 같은데용~~
예제 문항을 더 보고 싶다면!
ruclips.net/video/Ry6IbC9GP78/видео.html
7:45
9:15
ㅇㄷ
신화승 ??
@@ggabsmath 와드 라는 뜻이에용 중요한거 표시하는 책갈피 처럼
전승주 아.. 그런뜻이었군요~ ㅋㅋ 와드.... ㅋㅋ
개시발엄마없는경우의수
함수짱
헉;;;;;;;;; 고정하셔용
저거 공부해봤자 시험 안나옴
아..시험에 안나왔나봐여ㅠㅠ
와꾸 살발하네;;