Hyperbolic Functions: Definitions, Identities, Derivatives, and Inverses

Поделиться
HTML-код
  • Опубликовано: 1 ноя 2024

Комментарии • 198

  • @Dina-he1uc
    @Dina-he1uc 2 года назад +109

    Ive taken calc 1,2,3, linear algebra, intro to differential equations, and am now in complex vector analysis and somehow avoided learning about hyperbolic functions. This was great explanation and just what I needed for this class. Thank you :)

    • @anshulgupta8287
      @anshulgupta8287 2 года назад +2

      Same....

    • @6kbps
      @6kbps 2 года назад +2

      bruh im taking hyperbolic functions in calc 2

    • @mayankjain04
      @mayankjain04 Год назад +25

      Bruh I'm a fucking engineering 1st year student and this is the first time I'm hearing about hyperbolic functions. I dont recommended walking on any bridges i make in the future

    • @jimbb3821
      @jimbb3821 Год назад +1

      @@mayankjain04 lmao same

    • @joudh.7457
      @joudh.7457 Год назад +2

      I'm a second-year math major and I'm just learning about them now on my own. Why do they skip these?

  • @hareecionelson5875
    @hareecionelson5875 2 года назад +16

    Professor Dave, you continue to deliver on the kicks in the discovery.
    Learning that Hyperbolic geometry is literally geometry with Hyperbolas has warmed my soul

  • @aceeesz
    @aceeesz 3 года назад +476

    Thank you, Jesus.

    • @hunterz3163
      @hunterz3163 2 года назад +2

      Fu ck you don't mocking

    • @sfl928
      @sfl928 2 года назад +4

      @@hunterz3163 aww is hunter mad abt some dead dude

    • @carmen_13
      @carmen_13 2 года назад

      @@hunterz3163 cope

    • @camperbbq3026
      @camperbbq3026 2 года назад

      @@sfl928 bruh you get 0 women

    • @camperbbq3026
      @camperbbq3026 2 года назад +3

      @@carmen_13 bro has 💅 in his bio 💀

  • @gursharansingh215
    @gursharansingh215 5 лет назад +38

    It was the best . I liked your video very much. I was so confused about these h functions but your amazing video helped me a lot. Thank you very much sir.

  • @andrewmaksimovich2432
    @andrewmaksimovich2432 2 года назад +3

    I never learned hyperbolic functions in Calc 2, this is a great help in calc 3

  • @Tom-sp3gy
    @Tom-sp3gy 3 года назад +18

    Great video Dave. Enjoy all your uploaded material. You truly have mastered the art of distilling a topic to it bare essence. Your fan following is very lucky to have you. Just missed one small point though in this particular video. You forgot to explicitly describe the relationship between these trigonometric hyperbolic functions to an actual graphical hyperbola. That I think would have made the video just a tiny bit more complete.

    • @NewWesternFront
      @NewWesternFront Год назад +2

      what is that relationship?

    • @RobyBuraen
      @RobyBuraen 11 месяцев назад

      Caranya.seorang.seni.bangunan.

  • @sobhansabbagh6171
    @sobhansabbagh6171 6 месяцев назад

    I Had a calculus class this morning about this exact hyperbolic functions, and it took 90minuts, and professor dave finished it in 7 minutes.
    Thank you professor dave

  • @comic4relief
    @comic4relief 4 года назад +30

    Might have mentioned that y=cosh x makes a catenary.

  • @Krishnakinagri2004
    @Krishnakinagri2004 Год назад +1

    I am from india but
    I understand thes explain easily
    So I want to tell you
    Thank you very much

  • @Cristian-ie9et
    @Cristian-ie9et 2 года назад +4

    Brilliant. Truly short and poignant, thank you for making this and uploading it.

  • @ferkahmathiasgyinantwi1106
    @ferkahmathiasgyinantwi1106 3 года назад +8

    I have been roaming for so long
    But finally i have found him 🙏
    His name is Professor Dave

  • @yiannisserpico2646
    @yiannisserpico2646 6 лет назад +29

    Wish you were my face to face teacher!!

    • @nyksiex
      @nyksiex 3 года назад +4

      Wish you were my face

    • @ibrarkhan9878
      @ibrarkhan9878 3 года назад

      @@nyksiex 🤣🤣🤣

  • @bhuvanachandrika6284
    @bhuvanachandrika6284 3 года назад +2

    The video I was searching for..,is Finally found👍. Very well explained

  • @khushichudasama7468
    @khushichudasama7468 5 месяцев назад

    Thankyou sir , your lecture helped me from a horrible maths class .

  • @vispi1944
    @vispi1944 Год назад +2

    Very good and conceptually clear explanations.

  • @rifkiizza9792
    @rifkiizza9792 2 года назад +1

    thanks professor jesus, helps a lot

  • @naveedlihazi5076
    @naveedlihazi5076 2 года назад +1

    Just amazing, way better than our teacher in Universities.

  • @Naren7491
    @Naren7491 4 года назад +2

    Awesome and lucid explanation

  • @dannikamidgley
    @dannikamidgley 2 года назад

    Thank you father

  • @ameerunbegum7525
    @ameerunbegum7525 3 года назад +2

    Umm... Thank you. Will help me alot for my exam.

  • @OmiOhmy-xt6nf
    @OmiOhmy-xt6nf 4 года назад +8

    If I pass Calc it’ll be because of you 💕

  • @jello7734
    @jello7734 5 лет назад +9

    The graph of the system
    y = (1/2)e^x
    y = -(1/2)e^x
    is clearly not a hyperbola. On a hyperbola with no vertical asymptotes, the limit of dy/dx as x approaches plus or minus infinity should be finite (it should approach a line). For y = (1/2)e^x , dy/dx = (1/2)e^x which increases without bound as x approaches infinity (the graph does not approach a line).

    • @MrWill2714
      @MrWill2714 4 года назад +4

      Agreed! i'm not taking anything away from Professor Daye, but the grapth of Ae^x is the graph of the exponential function, not the graph of the hyperbola. The easy equation of a hyperbola is y=1/x. the area under that curve is ln. the inverse function of ln is e. so there's ur connection b/n e and hyperbolas. A rotated hyperbola has the equation y^2-y^2=R^2

    • @piratesofphysics4100
      @piratesofphysics4100 4 года назад +1

      @@MrWill2714 But those are really hyperbola.

    • @ConceptualCalculus
      @ConceptualCalculus 4 года назад +5

      The hyperbolic functions do come from a hyperbola, Dave's explanation is not how it works. Sal Khan has the right idea. "Hyperbolic functions and the unit hyperbola | Hyperbolic functions | Precalculus | Khan Academy."
      Dave is generally very good, but he's wrong about this.

  • @wolfumz
    @wolfumz 3 года назад +4

    blessings to professor dave

  • @4nujyadav
    @4nujyadav 4 месяца назад

    Thank you, sir

  • @ebubeanieke2072
    @ebubeanieke2072 Год назад

    Thanks prof Dave

  • @noahzidan8682
    @noahzidan8682 4 года назад +51

    What has my life come to

  • @elamvaluthis7268
    @elamvaluthis7268 Год назад

    Very comprehensive thank you sir.

  • @lord-qk3bx
    @lord-qk3bx 5 лет назад +4

    well explained sir dave.

  • @shahrukhshaikh4979
    @shahrukhshaikh4979 4 года назад +1

    Thanx for explaining

  • @d7oomyhabib79
    @d7oomyhabib79 Месяц назад

    My perfect tutor you and chatGPT. I hate my actual tutor never explained well

  • @cariagajadekarenc.6159
    @cariagajadekarenc.6159 2 года назад +1

    You're so good at teaching, sir!

  • @Studywithpm
    @Studywithpm Год назад

    Happy teacher's day sir ❤🎉

  • @rktiwa
    @rktiwa Год назад

    That's exactly what I needed. Thanks.

  • @priscanneoma4719
    @priscanneoma4719 Год назад

    Thanks

  • @harshini9378
    @harshini9378 3 года назад +3

    Amazing explanation sir! Keep doing.. great work!

  • @satheeshkumark4
    @satheeshkumark4 11 месяцев назад

    THANK YOU SIR
    GOD BLESS YOU

  • @shashankarora2945
    @shashankarora2945 2 года назад

    Simple and to the point thanks a lot

  • @MamtaRathore-o6q
    @MamtaRathore-o6q 2 месяца назад

    Thankyou😊

  • @Avighna
    @Avighna Год назад +1

    It's amazing how similar they are to normal trignometric functions!

  • @isaacweber7398
    @isaacweber7398 Год назад

    Thanks, Dave! God bless you, brother!

  • @Elliot.L87563
    @Elliot.L87563 4 месяца назад

    Taking this in high school

  • @smjsuriya8115
    @smjsuriya8115 6 лет назад +3

    Super.... It was very easy for understand

  • @susanleahwangari946
    @susanleahwangari946 3 года назад +1

    Really helped thank you

  • @michaelkast.5016
    @michaelkast.5016 3 года назад +2

    Happy Birthday Danae Bertoli from Arkadiko Dramas in Greece. #happy18#zoom#Panagiotis#Efthimis#corona

    • @teriyakichicken9969
      @teriyakichicken9969 3 года назад +2

      Happy birthday darling, we still love you, even if you didn't come to the first computer class

  • @inerammeloo7915
    @inerammeloo7915 2 года назад +1

    Thank you so much, this was very helpful!!

  • @ashishkharb7440
    @ashishkharb7440 2 года назад

    Very good

  • @jeeaspirant239
    @jeeaspirant239 4 года назад +7

    Amazing video and epic intro !!!

  • @felixsesero4694
    @felixsesero4694 Год назад

    Am happy fr this

  • @ashinkajay
    @ashinkajay 3 года назад

    thank you so much

  • @srilasyamerugu5117
    @srilasyamerugu5117 4 года назад +1

    Sir..you are simply superb!!!

  • @AbyJhan-sk6vh
    @AbyJhan-sk6vh 11 месяцев назад

    تشکر از شما استاد بزرگ👍

  • @adityamore2616
    @adityamore2616 5 лет назад +3

    Thank you so much. Helping me a lot!

  • @z.macademy4921
    @z.macademy4921 2 года назад

    So nice sir

  • @prathameshsannak6182
    @prathameshsannak6182 6 лет назад +1

    Please explain Taylor's theorem for differentiability of function..

  • @Pradeepyadav-hp4fb
    @Pradeepyadav-hp4fb 2 года назад

    Thank u sir

  • @sanyuktapurkait9120
    @sanyuktapurkait9120 5 лет назад +1

    Superb sir

  • @s.u.n.t.a.n6573
    @s.u.n.t.a.n6573 2 года назад

    I love this man

  • @maryamshafik7795
    @maryamshafik7795 4 года назад +1

    Thanks a lot for the amazing explanation sir

  • @beamlak6073
    @beamlak6073 3 года назад

    That was helpful
    You're the man

  • @monusehrawat5267
    @monusehrawat5267 5 лет назад +1

    Thanks sir.u are best

  • @geem2094
    @geem2094 6 лет назад +1

    Hi dave

  • @chirkutchor7866
    @chirkutchor7866 4 года назад +1

    i loved the intro

  • @razanalfrazdag94
    @razanalfrazdag94 4 месяца назад +1

    Wait..I don't get it!
    Why (e pwer y) Times (e bower -y) is equal to 1???
    I need to understand.

    • @miliez3477
      @miliez3477 23 дня назад

      Because when multiplying 2 exponent functions, you can add the exponents to each other. So e^y . e^-y = e^y-y = e^0 = 1. I hope you understand it. If not, feel free to ask questions.

  • @allesandromarcillones1963
    @allesandromarcillones1963 2 года назад

    Thank you math jesus

  • @jeevithamarnadu3329
    @jeevithamarnadu3329 6 лет назад +1

    Sir pls explain about Spintronics .....

  • @zekrax989
    @zekrax989 2 года назад +1

    Thanks for the translation, it was amazing information❤

  • @prakashkumar-op2jk
    @prakashkumar-op2jk 4 года назад +1

    Tq so much but one suggestion that subtitles in this vedio disturb to see the equations

  • @kavindukulathunga2406
    @kavindukulathunga2406 3 года назад

    well done good explanation , thank you

  • @geranimoekia7512
    @geranimoekia7512 2 года назад

    Genius
    !

  • @thewierdragonbaby4843
    @thewierdragonbaby4843 3 года назад

    Anyone noticed that cut at 3:20?

  • @tota-963
    @tota-963 11 месяцев назад

    يخي انقذتنا،،شكرا

  • @bellowtheshadow9624
    @bellowtheshadow9624 8 месяцев назад +1

    thank you, calculus jesus

  • @gracemackinza3316
    @gracemackinza3316 3 года назад

    Omg you are a life saver 😱

  • @littlestar1589
    @littlestar1589 5 лет назад +1

    Sir plz solve this problem,
    Cosh1/2x=√1/2(1+coshx)

  • @sunilgaurkhede5048
    @sunilgaurkhede5048 4 года назад +1

    Amazing

  • @TOUATITLIBAMOHAMMEDSEGHIR
    @TOUATITLIBAMOHAMMEDSEGHIR Год назад

    legend

  • @pawanyadav3399
    @pawanyadav3399 Год назад

    Nice

  • @pass335
    @pass335 3 года назад

    Due to the subtitles can't able to see the lower portion plz do something to solve its an earnest request🙏

  • @themathwizj07
    @themathwizj07 2 года назад

    What math class do you learn this in?

  • @ConceptualCalculus
    @ConceptualCalculus 4 года назад +11

    I'm disappointed in this vid. Professor Dave is my favorite for math videos to assign to my students, because the vids are professionally made, clear, understandable, and have good graphics. Some math vids are just unwatchably bad.
    I need a good vid on hyperbolic functions, but this one has a glaring error. Dave says that 1/2 e^x and -1/2 e^(-x) form a hyperbola. They do not. Hyperbolas have linear asymptotes. Exponentials do not.
    The hyperbolic functions do come from a hyperbola, but that's not how it works. Sal Khan has the right idea. "Hyperbolic functions and the unit hyperbola | Hyperbolic functions | Precalculus | Khan Academy"
    I want a vid with the production values of Professor Dave Explains, but with a correct explanation of how the hyperbolic functions relate to the unit hyperbola, and there isn't one. I'm bummed.

    • @mettataurr
      @mettataurr 4 года назад +4

      Then make it lazy teacher

    • @mettataurr
      @mettataurr 4 года назад +3

      @@ConceptualCalculus You might not struggle so much with your job if you could depend on your teaching instead of other people's videos

    • @manslayerpupil
      @manslayerpupil 4 года назад

      Weird flex but ok

    • @carultch
      @carultch 3 года назад

      He's not saying that it makes a hyperbola. It makes a function called a hyperbolic sine. It is related to hyperbolas in a similar way that sine and cosine are related to the circle, but it isn't a hyperbola itself. It also has a lot of properties in common with sine and cosine, but it isn't either of those functions either.

    • @ConceptualCalculus
      @ConceptualCalculus 3 года назад +2

      @@carultch I know what the hyperbolic sine function is. That is not the point. Listen to the vid from 1:20 to 1:35, where he says:
      "Now what does this mean graphically? Well, let’s take this expression and break it up into two terms: one-half e to the x, minus one-half e to the negative x. If we sketch these two curves, we get a hyperbola."
      That is incorrect. Sketching those two curves does not create a hyperbola.

  • @trumanburbank6899
    @trumanburbank6899 Год назад

    "I don't always drink hyperbolic functions. But when I do, I prefer Dos Hyperbolas - The most interesting function in the world."

  • @Josh-xe9ux
    @Josh-xe9ux 4 года назад

    Nice TY

  • @LaraSchilling
    @LaraSchilling 6 лет назад +7

    Curse you Texas Instruments users. Casio is standard for us Aussies :)
    I just bought an FX-82AU plus II for $12 (Co-op Bookshop on campus had a 70% off clearout on everything), but I kinda have strong feelings for my decade old FX-100AU. Can't have enough calculators.

    • @a_spire
      @a_spire 4 года назад

      I'm pretty sure 90% of the people on the planet use casio calculators

  • @in_ashish
    @in_ashish 2 года назад

    Jesus. You are genius! 🤯🙏

  • @-Shakirhassanrind786
    @-Shakirhassanrind786 2 месяца назад

    Which country you have live

  • @ShamsudeenSadiq
    @ShamsudeenSadiq Год назад

    You didn't give the derivative of inverse of cosech , sech and coth

  • @شوقالرجيعي
    @شوقالرجيعي 5 лет назад +7

    I watched the intro 10+ times

  • @محمدفيصل-ج5ع
    @محمدفيصل-ج5ع 4 года назад +1

    Hello , What is the range of sin h when y=0

    • @mer2760
      @mer2760 3 года назад +1

      the range of function has nothing to do with the coordinates, the range still same which is all real numbers

  • @bhoxzivanlangnamanpfhoe7869
    @bhoxzivanlangnamanpfhoe7869 3 года назад +1

    is their anti derivative the same as the ones with trigonometric functions too?

    • @ruscul8711
      @ruscul8711 3 года назад +1

      nope. the signs are different. that change in sign made all that huge difference.
      example:
      d[tanh^-1 x] = 1/(1-x2)
      d[tan^-1 x] = 1/(1+x2)
      and no you cant multiply the other by negative to get the other. they are completely different.

  • @zakirmohammed9662
    @zakirmohammed9662 6 лет назад +1

    thanks sir .But electricity vedios may i get ur playlist ?

  • @JatinS-yt
    @JatinS-yt Год назад +1

    Jesus himself is on our rescue.

  • @LaraSchilling
    @LaraSchilling 6 лет назад +16

    Also, we now officially call sech "SHREK".

  • @mosabbirnaaz8253
    @mosabbirnaaz8253 5 лет назад +1

    Great Sirrrr... You are superstar... I understood the whole... B)

  • @SahilDandyan
    @SahilDandyan 4 года назад +1

    Which app you use to edit

  • @AselaRajakaruna-dx1wy
    @AselaRajakaruna-dx1wy 2 месяца назад

    ❤❤❤️ from 🇱🇰

  • @chrollokillua3945
    @chrollokillua3945 3 года назад

    This is like the homily of engineering my dudes

  • @tlohith6252
    @tlohith6252 5 лет назад +1

    I NEED PROBLEMS OF INTER 1ST YEAR PLZZZZ

  • @rajeshrout1851
    @rajeshrout1851 6 лет назад +1

    Sir rice attracting chemicals nema

  • @MyeonTokki
    @MyeonTokki Год назад

    Thx jesus

  • @ranguy3994
    @ranguy3994 2 года назад +1

    thankyou Jesus