Regression with Count Data: Poisson and Negative Binomial

Поделиться
HTML-код
  • Опубликовано: 31 дек 2024

Комментарии • 31

  • @youngzproduction7498
    @youngzproduction7498 3 года назад +15

    This clip alone gave me more information than I ever imagined. Thanks.

  • @dtox316
    @dtox316 3 года назад +6

    Best video on the internet on this topic in my opinion. Covers the why, the what, the when and the how.. perfect! Liked and subbed. Thanks!

    • @smartmarc333
      @smartmarc333 3 года назад +1

      I agree, really really good educational video, much appreciated

  • @kaustavchakrabarty4925
    @kaustavchakrabarty4925 3 года назад +9

    can you provide the code for the mean vs varaince plot for quasi poisson and negative binomial glm....that will be very helpful

  • @ibrahimkassoumhabibou4076
    @ibrahimkassoumhabibou4076 3 года назад +11

    Hi ! Thank you for explaining theses models. Is it possible to provide the R code you 've been using to compute the
    graphics ?

  • @estefaniavillanueva1294
    @estefaniavillanueva1294 8 месяцев назад

    OMG, thank you so much for this very informative video, it really helped me a lot!

  • @pabos1993
    @pabos1993 2 года назад +3

    Congratulations! Excellent Video. It would help a lot if you provided the code for the variance vs mean plot and the corresponding lines predicted by the quasi-Poisson and negative binomial model. Thanks

  • @HashanDananjaya
    @HashanDananjaya 11 месяцев назад

    Thank you very much! This helped me quite a lot!!

  • @francoisdaudelin8610
    @francoisdaudelin8610 3 года назад +3

    Thank you so much! Excellent explanation!

    • @francoisdaudelin8610
      @francoisdaudelin8610 3 года назад

      Quick question: Can I use multivariate zero truncated Poisson regression to compare the effects of two IVs on a DV? I'm mostly wondering if the size of the coefficients lose their meaning because of the zero truncation

  • @RqueErre
    @RqueErre 2 года назад +1

    Amazing video! Excellent explanation and very useful!

  • @shengmingwong6968
    @shengmingwong6968 2 года назад

    Very excellent video! Thanks!

  • @4mfenme
    @4mfenme 2 месяца назад

    What would I use to do a negative binomial regression in SAS?

  • @hola-kx1gn
    @hola-kx1gn 3 года назад +1

    Nice ! Thanks for the timestamps !

  • @thejll
    @thejll 2 года назад

    When you talk about y being Poisson distributed, do you mean ‘the errors on y’? I have data where y is a combination of things only some of which carry counting-statistics uncertainties.

  • @cathrineb4923
    @cathrineb4923 3 года назад

    Thank you so much for posting this video!

  • @brazilfootball
    @brazilfootball 3 года назад

    Do fish counts from a bay over time disqualify this kind of data for a Poisson distribution because it's a time series dataset?

  • @pranilbasu7476
    @pranilbasu7476 3 года назад

    Great ! Please keep posting more such videos

  • @steilacoom
    @steilacoom 2 года назад

    Great explanations

  • @iaaan1245
    @iaaan1245 2 года назад

    this is an awesome video

  • @laurafigueroa44
    @laurafigueroa44 3 года назад

    super helpful, thank you Matthew!

  • @tonycardinal413
    @tonycardinal413 2 года назад

    Excellent video. Thank you ! Quick ques: When you say that the mean must equal the variance, do you mean that the mean of all the Y values of the observed data points must equal the variance of all the observed Y values of the dots of the scatter plot? thanks !

  • @sameerhassan7516
    @sameerhassan7516 2 года назад

    Very nice video. Thank you!

  • @abcpsc
    @abcpsc 3 года назад

    So... How to get the confidence interval of y after fitting the model?

  • @Nicoleuni7
    @Nicoleuni7 6 месяцев назад

    THANK YOUUUUUU

  • @SangheiliG099
    @SangheiliG099 2 года назад

    Just thank youi!

  • @laxmanbisht2638
    @laxmanbisht2638 3 года назад

    great.. thanks sir

  • @kanefoster8780
    @kanefoster8780 3 года назад

    great vid, cheers

  • @chacmool2581
    @chacmool2581 2 месяца назад

    Yeap, the first thing you do is check the data for dispersion. If it's fine, go with Poisson. Otherwise, you are looking at quasi-Poisson or Negative Binomial.

  • @BrOgam3rHD
    @BrOgam3rHD Год назад

    Holy fuck is this video good