Section 7.4 Lagrange Multipliers and Constrained Optimization

Поделиться
HTML-код
  • Опубликовано: 22 янв 2025
  • How to find relative extrema using the Lagrange Multipliers method

Комментарии • 28

  • @karthik2728
    @karthik2728 3 года назад +3

    such a good and funny professor..Thanks a lot

  • @Kraft_Funk
    @Kraft_Funk 5 лет назад +5

    Thank you very much, your work is appreciated :)

  • @johnnolen8338
    @johnnolen8338 3 года назад +3

    @17:41 "We're gonna be off by a negative here."
    The minus sign is superfluous. The constraint, g(x,y), is a homogeneous equation [it's equal to zero]. As such it literally does not matter whether you add or subtract it from the objective function when forming the Lagrangian function, F(x,y,λ).
    Most mathematicians would write F(x,y,λ) = f(x,y) - λ·g(x,y), where g(x,y) = 100x + 200y - 30000 = 0. Economists have a weird obsession with non-standard notation. They think it enhances job security or something. To an economist the Lagrangian is typically written as F(x,y,λ) = f(x,y) + λ·g(x,y), where g(x,y) = 30000 - 100x - 200y = 0. In this case the minus sign that would typically be in front of λ is distributed across the terms of g(x,y). But even this doesn't make any difference in the solution to the problem because g(x,y) = 0 and because nobody cares about the sign of λ; it's only a parameter guaranteeing that grad f is parallel to grad g. You didn't make a mistake in setting the problem up the way you did in the first place. 😎

  • @cclemente74
    @cclemente74 5 лет назад +4

    Explained quite well. Where can one get the book?

  • @newtonocharimenyenya2458
    @newtonocharimenyenya2458 3 года назад +1

    A very Great piece.

  • @rishavjain1867
    @rishavjain1867 2 года назад

    Absolutely loved the video

  • @elinanikolopoulou1769
    @elinanikolopoulou1769 2 года назад

    don't we need to do the second derivative test with the bordered hessian matrix at the end of each exercise ?

  • @clareprv8878
    @clareprv8878 Год назад

    what is is the maximum value of the second problem?

  • @navneetkaur9244
    @navneetkaur9244 6 лет назад

    Tysm....this video proves to b very useful for me...😊

  • @victorhong3466
    @victorhong3466 Год назад

    Dont you have to take the negative of the objective function since this is a maximization problem?

  • @igweonucassy
    @igweonucassy 3 года назад +1

    Please do a video on second order condition?

  • @laurenceigala7819
    @laurenceigala7819 3 года назад +1

    What textbook are you using to get this theorem?

  • @coliwemoyo3941
    @coliwemoyo3941 2 года назад

    😄😄😄😄😄thank you ma'am, yo explain in so well!!

  • @yourname1869
    @yourname1869 4 года назад

    Very well explained

  • @wachi6850
    @wachi6850 4 года назад +1

    Thank you very much

  • @j.emmanueldugborgartarrjr.6283
    @j.emmanueldugborgartarrjr.6283 3 года назад +2

    Thanks! But you only solved for critical values, and not optimal quantity.

  • @sadiyairin339
    @sadiyairin339 4 года назад

    Q= ALαKβ
    C = wL + rK
    F(L,K, λ) = ALαKβ + λ(C-wL-rK)
    Where r=5; w=10; α=1/2; β=1/2;
    How can I find L,K,Q, and λ?

  • @kinkajou23
    @kinkajou23 4 года назад +1

    Thanks a lot.

  • @ttt1786
    @ttt1786 3 года назад

    What software do you use to write?

  • @AdityaRaj-xm6oi
    @AdityaRaj-xm6oi 2 года назад

    Thank you love you hug you and appreciate you

  • @melisasercan9480
    @melisasercan9480 5 лет назад

    so helpful thank you

  • @vijays-rd8uc
    @vijays-rd8uc 5 лет назад +1

    thank you

  • @coricom
    @coricom 3 года назад

    You never explained why (3,3) was a point of maximum and not of minimum. You must explain the sufficient conditions as well.

  • @anmariasunny123
    @anmariasunny123 3 года назад

    Tysm❤️

  • @chinomnsodaniel7234
    @chinomnsodaniel7234 2 года назад

    Thank you very much. Not making it formal made it interesting. Imagine! Maths? Interesting?

  • @HuaweiY-kq2yq
    @HuaweiY-kq2yq 3 года назад

    Are u mad women frist you learn

  • @jedi10101
    @jedi10101 5 месяцев назад

    from scipy.optimize import minimize as mimi
    sol=mimi(lambda a:2*a[0]*a[1],x0=[1,1],constraints=[{'type':'eq','fun':lambda a:a[0]+a[1]-6}])
    print(sol)
    message: Optimization terminated successfully
    success: True
    status: 0
    fun: 18.000000357627883
    * x: [ 3.000e+00 3.000e+00]*
    nit: 3
    jac: [ 6.000e+00 6.000e+00]
    nfev: 10
    njev: 3