Lagrange Multipliers #2: Two Variables, 1 Constraint

Поделиться
HTML-код
  • Опубликовано: 31 янв 2025

Комментарии • 11

  • @itsadam4316
    @itsadam4316 7 месяцев назад

    You're honestly a life safer. So clear with every step and you broke down something very daunting into a bunch of simple steps.

  • @williamramsfeldt201
    @williamramsfeldt201 11 месяцев назад +1

    Thank you! Very clear example and easy to follow. Helped me with my own problem.

    • @turksvids
      @turksvids  11 месяцев назад

      Glad it helped! Lagrange multipliers is definitely one of the tricky topics you run into.

  • @jamessullivan9363
    @jamessullivan9363 2 года назад +1

    thank you for a good example with such clear work

  • @b.f.skinner4383
    @b.f.skinner4383 4 года назад

    Great video, easy to follow along!

  • @newtonocharimenyenya2458
    @newtonocharimenyenya2458 3 года назад

    A very Great piece.

  • @junior5146
    @junior5146 4 года назад +2

    I have a hard time with this. Sometimes you solve the system of eqs with respect to lambda and sometimes with x and y. I am not sure when to choose which. Can the lambda ever equal zero when calculating lagrange multipliers?

    • @turksvids
      @turksvids  4 года назад +1

      Yeah, the hard part of Lagrange Multipliers is really solving the system. For my purposes I almost never need to know the value of lambda so I usually try to solve equal equation for lambda and then set those equations equal to each other. Unfortunately there's not really a hard fast rule of what to do.

  • @anandabiswas5460
    @anandabiswas5460 Год назад

    How to apply this on functions like 3x^2 + 4xy + y^2. like when xy are together multiplied.....solving the system of equations then becomes a real challenge ! any idea ?

  • @primeboy1256
    @primeboy1256 3 года назад

    THANK YOU

  • @henrykantzes1536
    @henrykantzes1536 4 года назад

    this dude smart