Graphene Filtration | A revolution in Desalination technology!

Поделиться
HTML-код
  • Опубликовано: 2 авг 2024
  • Recently, a group of Manchester Institute of Science and Technology researchers made a major breakthrough in the graphene based desalination process. They were able to remove 97% of common salts in an energy efficient way. The current reverse osmosis desalination technology is energy intensive, and desalination plants’ capital costs are high. By the year 2025, 14% of the world's population will experience water scarcity, which makes this discovery very important. Moreover, graphene-based filtration technology could come to your kitchen very soon.
    Links to their work - www.nature.com/articles/nnano.... , science.sciencemag.org/conten...
    Be an LE supporter or contributor: / @lesics
    instagram : / sabinzmathew
    Twitter : / sabinsmathew
    Telegram : t.me/sabinmathew
    FB : / sabinzmathew
    Voice over artist : www.fiverr.com/voiceonthemove

Комментарии • 885

  • @Lesics
    @Lesics  4 года назад +54

    Links to their work - www.nature.com/articles/nnano.2017.21#:~:text=Abstract,of%20common%20salts4%2C6. , science.sciencemag.org/content/343/6172/752

    • @VerifyTheTruth
      @VerifyTheTruth 4 года назад +7

      What Is The Drawback To Solar Pumped Laser/Lensing Boiler Distillation Systems? I Am Relatively Sure That They Could Be Immediately Implemented With An Extremely High Benefit To Cost Ratio Using Currently Existing Technologies. It Solves Both The Pumping And The Desalination Processes Into One Efficient And Inexpensive Solution That Can Be Implemented Anywhere That There Is Sunlight, While Simultaneously Generating Energy Instead Of Requiring It.

    • @VerifyTheTruth
      @VerifyTheTruth 4 года назад +3

      I Have Conceptualized Several Systems That Could Be Easily Tested With Minimal Effort And Negligible Expense. All Of The Mathematical Specifications Are Variably Dependent Upon Materials And Scale. It Would Only Take A Few Days With The Right People, Materials, And Equipment To Prove It's Value At Scale.

    • @VerifyTheTruth
      @VerifyTheTruth 4 года назад +3

      There Are Millions Of People Who Need The Water Right Now, Not By 2025.

    • @vitordelima
      @vitordelima 4 года назад +2

      @@VerifyTheTruth Some toxic materials also evaporate with water, but this can be filtered after you distillate. Maybe there is some affordable process to separate water vapor from other substances while it's still a gas, similar to what is used in petrol refineries.

    • @VerifyTheTruth
      @VerifyTheTruth 4 года назад +2

      @@vitordelima Absolutely, Multi-Chamber Heat And Pressure Differentials To The Distillates, Much Like Crude Refineries. The Technologies, Equipment, And Infrastructure Already Exists For Immediate Large Scale Implementation Of Basic Solar Boiler Distillery Desalination. Concentrated Sunlight Can Boil Or Combust Water Instantaneously. With The Right Specifications, Mostly Any Present Chemicals Or Biological Contaminants Can Be Seperated, Concentrated, And/Or Neutralized, As With A Waste Water Treatment System. Permanent Silver Filtration Could Render The Distilled Water Drinkable After Remineralization Or It Could Be Utilized For Recharging Aquifers, Food Production, And Cash Crops. The Pumping Could Operate As A Solar Primed Siphon With Unidirectional Check Valves, Containment Towers, And Drop Points. The Salt Water Can Be Moved Uphill With Head Pressure Through Roman Concrete Or Rarefaction Tempered Quartz Glass Piping To Be Processed Down Line, Or Desalinated On Site And Pipelined Through Steel. The Value Of The Water Would Likely Far Exceed Oil Long-Term In Numberous Areas And Applications. Excess Power Generated By The Solar Boilers, Once The System Is Primed, Can Be Harnessed With Hydraulically Distributed Hydro-Pneumatic Pistons And/Or With Turbines. Apparently The Technology Also Exists To Combust Salt Water. This Is Just One Highly Generalized Solution Out Of Many Combinations Of Existing Tech.

  • @JohnTrustworthy
    @JohnTrustworthy 3 года назад +424

    Graphene can do everything except leave the laboratory.

    • @jasonmorris9330
      @jasonmorris9330 3 года назад +16

      there are actually graphene products out there right now. You just don't know it contains graphene

    • @sriharshacv7760
      @sriharshacv7760 3 года назад +9

      @@jasonmorris9330 such as ...

    • @jasonmorris9330
      @jasonmorris9330 3 года назад +13

      @@sriharshacv7760 seeing as how I work for a company that is implementing graphene in their products, let's just say it's in the weapons industry already

    • @nickolaymiltenov
      @nickolaymiltenov 3 года назад +21

      @@jasonmorris9330 But usually we don't use weapon systems in our everyday lives...😁

    • @MegaIkkuh
      @MegaIkkuh 3 года назад +31

      @@nickolaymiltenov the statement was "it can't leave the laboratory" and to be fair, it left the laboratory, like most other new inventions, straight into weapons...

  • @Pyedr
    @Pyedr 4 года назад +223

    The unqualified use of "miraculous" raises my skepticism hackles.

    • @freddiereadie30
      @freddiereadie30 4 года назад +4

      It's a clever way of saying it's a trade secret.

    • @jeremysimmons8864
      @jeremysimmons8864 4 года назад +26

      @@freddiereadie30 OR a "clever" way of overselling the feasibility or advantage of a technology.

    • @CatboyChemicalSociety
      @CatboyChemicalSociety 3 года назад +5

      honestly I really dont see how they can neatly stacked GO sludge from an exfoliation process.
      crosslinked epoxy is FKING HUGE so how the fk can you get such tiny spaces between the graphene oxide.
      im thinking they just compositized the GO with a certain percentage of epoxy which still allows it to be permeable with water then painted/pressed/rolled the resulting mix if it fking works into nice sheets for RO membranes.

    • @CatboyChemicalSociety
      @CatboyChemicalSociety 3 года назад +5

      @@freddiereadie30 its not their paper literally shows how the membrane looks it FKING SUCKS and isnt practical in the slightest.
      Their active surface area is in the friggin micrometers and for it to be practical that needs to be in METERS!!

    • @CatboyChemicalSociety
      @CatboyChemicalSociety 3 года назад +1

      @@unAgorist what about you I could say the same.

  • @SamChemfen
    @SamChemfen 4 года назад +85

    As a chemist, I really liked you included the coordinated water molecules on dissolved ions. Very nice video by the way!

    • @swastikbiswas8293
      @swastikbiswas8293 3 года назад +2

      Same here.. most of the textbooks misses the solvation sphere in their explanation

    • @swastikbiswas8293
      @swastikbiswas8293 3 года назад +1

      @Александр Лазарев activated carbon already exists for water filtration.. doped graphene is the next step. Even if it can't filter water, it can preferentially intercalate ions which reduces salinity too

    • @armwrestlersanta
      @armwrestlersanta 3 года назад +2

      As a non chemist I liked ur comment

    • @kousueki7024
      @kousueki7024 3 года назад +1

      as a non kemist, im just excited to use a future low cost graphene water filter to filter a high ppm water source..

    • @armwrestlersanta
      @armwrestlersanta 3 года назад

      @@kousueki7024 chemis

  • @janami-dharmam
    @janami-dharmam 4 года назад +133

    The paper is more than 3 years old; the authors focus on the tunable aspect of the gaphene membranes.

    • @robinsss
      @robinsss 4 года назад +5

      what paper?

    • @Lesics
      @Lesics  4 года назад +69

      We were in touch with this research team. They have collaborated with a UK based company, LifeSaver to convert this research into a product. Maybe in a few years we can expect it to hit the market.

    • @frankh.3849
      @frankh.3849 4 года назад +10

      Graphene is the way of the future. Between graphene, Neutrinovoltaic, and CO2 bio fuel conversion using solar energy and radio waves the world will forever be changed

    • @janami-dharmam
      @janami-dharmam 4 года назад +3

      @@frankh.3849 We need to have a solution now! CO2 biofuel conversion is carried out by plants and is not the most efficient.

    • @frankh.3849
      @frankh.3849 4 года назад +5

      @@janami-dharmam it can be done now with solar energy and EMF in the radio spectrum. They have all ready built prototypes. They have also figured out a simple way to do it electrochemical using solar energy with the highest reported efficiency. Though the method using radio waves is the cheapest and leaves a zero carbon footprint.

  • @bohanxu6125
    @bohanxu6125 4 года назад +311

    "I have a probl"
    "graphene"
    "but I haven't told you th"
    "GRRRAAAAAAPHEEEEENNNE"

    • @robinsss
      @robinsss 4 года назад +8

      graphene : it cures all

    • @astrogirl7616
      @astrogirl7616 3 года назад +4

      😂😂😂😂😂 totally me
      And I feel like I got the cure everybody.. Nanotechbology and grapheeeene

    • @InsaneNuYawka
      @InsaneNuYawka 3 года назад +1

      😂

    • @JohnDobak
      @JohnDobak 3 года назад

      It's true. Now if only someone could master the manufacture and shaping of graphene.

    • @JohnTrustworthy
      @JohnTrustworthy 3 года назад +4

      Graphene can do everything except leave the laboratory.

  • @MEJOVA
    @MEJOVA 4 года назад +5

    I love the way you explain the concepts.

  • @wolfbear7
    @wolfbear7 4 года назад +3

    I've been waiting for this to be perfected. It has been aong time coming.

  • @olumuyiwaasunmo
    @olumuyiwaasunmo 3 года назад

    One of the brilliant videos I've had to watch on this subject. Thanks for it.

  • @jeremysimmons8864
    @jeremysimmons8864 4 года назад +84

    The value provided for the salt rejection of salt in conventional RO membranes does not represent the state of the art. For example, DOW Filmtec model SW30HRLE-400i is rated for a minimum of 99.65% (cited from its data sheet). However the video attributes only 90-95% to conventional RO membranes. The authors of the paper cited in the video found the the GO membrane could provide 97% salt rejection, which does not surpass state-of-the-art high rejection membranes.
    In the Nature paper cited by the video, it seems the authors are more excited about the tunability of the GO membranes which may open up opportunities in other filtration applications.

    • @davidmende3409
      @davidmende3409 3 года назад +17

      Donno mate - the drastically lowered energy requirements kinda seem helpful - but maybe thats just me.

    • @alanwatts8239
      @alanwatts8239 3 года назад +5

      I think it is safe to say you would still get more use out of graphene filtration.

    • @jeremysimmons8864
      @jeremysimmons8864 3 года назад +3

      @@davidmende3409 You should check out other comments. The "lower energy requirements" has been discussed thoroughly and the conclusion seems to be that that is a false. I don't even think the video, or the scientific papers this was based on, claim that the GO membranes have lower energy requirements for filtration.

    • @jeremysimmons8864
      @jeremysimmons8864 3 года назад

      @@alanwatts8239 why? It's not obvious to me why you would make that conclusion.
      What are the mechanisms that prevent us from getting use out of either one? What is the difference between the two that creates a difference in their longevity?

    • @seanrossouw9936
      @seanrossouw9936 3 года назад +2

      Agreed, that stood out to me too. They also do not list the standard solution this rejection is measured on, or explain WHY the energy requirement is lower. Osmotic pressure must still be overcome.

  • @TheWorldBelow360
    @TheWorldBelow360 Год назад +3

    Nano engineering is so unbelievably profound. Not many amateurs can tune the really expensive equipment. Yet.

  • @tomatrix7525
    @tomatrix7525 4 года назад +1

    Wow wow wow wow.....!!! Just stumbled upon the channel and I love it

  • @QuestionEverythingButWHY
    @QuestionEverythingButWHY 4 года назад +136

    “What is now proved was once only imagined.”
    -William Blake

    • @burnerjack01
      @burnerjack01 4 года назад +6

      "There's a sucker born every minute."- PT Barnum

    • @robinsss
      @robinsss 4 года назад +1

      @@burnerjack01 no tricks here

    • @Hgulix62
      @Hgulix62 3 года назад

      no shit

    • @duckduckgoismuchbetter
      @duckduckgoismuchbetter 3 года назад

      @@burnerjack01 "There's a scientifically illiterate fool born every second." - Me -

  • @Ralphgtx280
    @Ralphgtx280 3 года назад +54

    you'll still have to pump there will still be osmotic pressure this would just be a better RO membrane ...

    • @lamebubblesflysohigh
      @lamebubblesflysohigh 3 года назад +3

      Yea but if it is better enough, it may become viable on large scale. Maximizing the amount of water flowing through the filtration medium while minimizing the required energy is the key.

    • @Ralphgtx280
      @Ralphgtx280 3 года назад +11

      @@lamebubblesflysohigh it being tuneable may be an advantage but really the amount of energy is is a function of the osmotic pressure + the mechanical losses. The osmotic pressure is unchanged and there is no indication of addressing the mechanical losses.
      Its like pumping water uphill , correctly sizing the pipe and making it as straight as possible with as smooth walls as possible will minimise mechanical losses but you will never be able to get water up a hill with less energy than the added gravitational potential energy.

    • @purplepotatoes9255
      @purplepotatoes9255 3 года назад +2

      @@Ralphgtx280 if you were to put the filtrated water below the salt water, would osmosis come into play? Like, if the graphene sheets were too be put above vats, instead of right next to them?

    • @victorhopper6774
      @victorhopper6774 3 года назад +3

      @@Ralphgtx280 trees think different.

    • @jokers7890
      @jokers7890 3 года назад

      @@purplepotatoes9255 Good idea, but no, its not enough pressure, and that IS the problem....RO takes very large amounts of pressure to work (which requires ALOT of energy to create this pressure). The mass of water used in RO does not create this high pressure. And let's say we use the entire pressure of a deep ocean.....this would work, but the problem then is how do you get the clean water back up to the surface? This would also use the same amount of large energy. The point is that energy conservation laws apply to all forces, including pressure. You cannot overcome the energy differential with pressure.....the energy to break the bonds is the same either way. This has to do with the profound properties of water itself.....so the same reasons that make water the source of all life, is the same reasons why it is difficult to get clean water. This is also why the earth's ecosystem is very complex in cleaning water. Final conclusion: Humanity cannot overcome the scarcity of energy until it overcomes the entire capitalist system. Only socialism as a path to communism will allow humanity to have a surplus of energy. There literaly is no scarcity of energy in the universe, it is the capitalist system that creates a scarcity and forces humanity to rely on self-destructive toxic fossil fuels for energy. Go humans! Good luck.

  • @Lyf4rMusic
    @Lyf4rMusic 4 года назад +23

    I love New Inventions like these !!
    Desalination is the future as more and more population grows and ground water resources won't be enough for all of us.
    Technologies like these really will help in decreasing the per unit cost of filtering it and making it available for masses.

    • @Lyf4rMusic
      @Lyf4rMusic 4 года назад +1

      @@thealienrobotanthropologist Yeah, good luck convincing that to Billions of population around the world. So, it's better to prepare for worst-case scenario when we have the time :)

    • @renatoigmed
      @renatoigmed 4 года назад +1

      @@thealienrobotanthropologist I am one of those who will never have children. if it were up to me no one would have it for the next 30 or 40 years.

    • @robinsss
      @robinsss 4 года назад +3

      @@thealienrobotanthropologist ''''''''The future is learning to not have more kids that you can afford to take care of.''''''
      wrong
      the future is using logic and advanced technology to conquer our problems and continuing living life without having to worry about whether we have enough resources

    • @simplespecial3313
      @simplespecial3313 Год назад +1

      ​@@robinsss he is sterile

    • @CountingStars333
      @CountingStars333 4 месяца назад

      Populations arent growing except Africa.

  • @anupamguha3017
    @anupamguha3017 4 года назад

    Good impressive innovation. Thanks for the video Sabine !

  • @nickkrug8157
    @nickkrug8157 3 года назад

    Thank you Dr James Tour

  • @mr2octavio
    @mr2octavio 4 года назад

    Thank you for making the video.

  • @PrivateSi
    @PrivateSi 4 года назад

    Excellent news and good explanation, cheers!

  • @markplain2555
    @markplain2555 4 года назад +125

    I have a simple question: won't the salt clog up the entry point and prevent water going through?

    • @MottyGlix
      @MottyGlix 4 года назад +36

      In many filters, you commonly clean them by running cleaned fluid (here, water) backward through the filter medium and washing away the concentrated captured stuff that you are filtering out.

    • @markplain2555
      @markplain2555 4 года назад +6

      @@MottyGlix correct - that I know - can you do it here with this material,p? I always knew about (what you said) and to me it was the critical question that first needs to be answered before we can seriously consider this material as a filter.

    • @markplain2555
      @markplain2555 4 года назад +26

      @Inotamira Orani I have actually been involved in water & waste water treatment. I can tell you the devil is in the detail. What often seems technically obvious often is practically impossible. In summary.... Let's see if someone gets this right.

    • @tomatrix7525
      @tomatrix7525 4 года назад +12

      Mark yep. Generally these filters must be replaced or cleaned. They last for about 24hours of use. They slowly loose efficiency over that period as more and more salt clogs the entry. They are usually cleaned upon reaching 30% efficiency in resoect to thr original non clogged 100%. As I said, this typically occurs after 24hours of use, assuming typical salt concentrations etc...

    • @zachass3724
      @zachass3724 3 года назад +3

      The video starting at 5:00 explains your question.

  • @matterisnotsolid8295
    @matterisnotsolid8295 3 года назад +11

    This is the most amazing computer generated voice I have ever heard.

  • @NastySasquatch
    @NastySasquatch 3 года назад +1

    Oh wow it's really similar to the process for constraining electron flow in silicon laminate layers. Way cool.

  • @dy7296
    @dy7296 4 года назад

    Finally, a new video... after weeks....

  • @bimmjim
    @bimmjim 4 года назад +26

    I am a materials engineer. The possibilities of new materials with new properties is virtually infinite.

    • @dosmastrify
      @dosmastrify 4 года назад +9

      I am not a meterials engineer. The possibility of new materials with new properties is virtually infinite.

    • @JC-yb3zb
      @JC-yb3zb 4 года назад +5

      @@dosmastrify I am not a troll. The possibility of new materials with new properties is virtually infinite.

    • @dosmastrify
      @dosmastrify 4 года назад

      @@JC-yb3zb you just won the game

    • @JC-yb3zb
      @JC-yb3zb 4 года назад +2

      @@dosmastrify I'll be here all week.

    • @user-sw7hc8vd7m
      @user-sw7hc8vd7m 4 года назад

      But why do molecules go only in one direction through a graphene filter? Does osmose afraid graphen?

  • @kahlilstoltzfus6517
    @kahlilstoltzfus6517 4 года назад +53

    I remember learning that ions dissolve via ion dipole interactions (intermolecular force). Thus there is no sharing of electrons and not a covalent bond. This should be fact checked. (4:06)

    • @Wilewee
      @Wilewee 4 года назад +15

      It's clearly an error saying the salt-to-water molecules are covalent. As you say, it's an ion-dipole interaction that binds them together. I dont't know about the strength of the bond, but I'm sure it's stronger than water to water molecule one.

    • @luka7383
      @luka7383 4 года назад +15

      It's a bit more complicated then that. When water (or any other ligand) complexes with an ion, there is actually bond formation, It's not just electrostatic interactions. You only learn about the ion-dipole interactions because they are simple physical forces with which we can easily explain and calculate attraction between ions en dipoles. Metal-water coördinated complexes are easily formed however I don't think anion complexes are easily formed. Nitrate, sulfate, chloride - water interactions are mostly ion dipole interactions i think.

    • @kahlilstoltzfus6517
      @kahlilstoltzfus6517 4 года назад +3

      @@luka7383 This is very informative. Thank you for this response!

    • @halasimov1362
      @halasimov1362 4 года назад +7

      Because maybe, you're gonna be the one that saves me
      And after all, you're my van der waals

  • @0ctatr0n
    @0ctatr0n 3 года назад +6

    Not real until they do the classic cooking show trick of "And here's one I prepared earlier"

  • @tjejojyj
    @tjejojyj 3 года назад

    Very interesting. Excellent video. Hopefully it is practical.

  • @Gargamoth
    @Gargamoth 3 года назад

    Build it!! I can tell you, I feel and taste the difference in water quality from northern and southern states. This would benefit me a lot

  • @Beyond_Matter
    @Beyond_Matter 3 года назад

    Thank you.

  • @GoxXxLB
    @GoxXxLB 4 года назад +5

    It would be good to put link to the paper discussing the new technology. DOI or something connecting discovery to the authors.
    Really awesome video.

    • @Pikminiman
      @Pikminiman 4 года назад

      +

    • @Thedamped
      @Thedamped 4 года назад

      the paper is now linked in a pinned comment

  • @ja.n.3434
    @ja.n.3434 4 года назад

    A insane material...hope so that I could work with it later

  • @cadwithprashant6010
    @cadwithprashant6010 4 года назад

    Thank you for Video

  • @colinkamoda9502
    @colinkamoda9502 3 года назад

    I love this channel.

  • @avejst
    @avejst 4 года назад

    Thanks for sharing 👍😀

  • @menotu000
    @menotu000 3 года назад +3

    Since Graphene is such a wonder material at the nano scale, I wonder what other elements could be tuned in this way to achieve similar seemingly miraculous use cases. Perhaps a room temp superconductor could be made from a common conductive element in a nano-structure... etc.

  • @rewalos5077
    @rewalos5077 3 года назад +8

    Thank you so much for teaching me this. I have a question though: do we have a way of handling the brine that is produced from the salt molecules left over on the other side?

  • @kranthikumarvallakati2886
    @kranthikumarvallakati2886 4 года назад

    Excellent videos.

  • @gregorypkampwirth8852
    @gregorypkampwirth8852 2 года назад

    Thanks!

  • @zaurenstoates7306
    @zaurenstoates7306 4 года назад

    Very well animated and informative video 😌

  • @abisundaram1247
    @abisundaram1247 4 года назад +13

    Graphene stepping in another usage

  • @buddingscientist170
    @buddingscientist170 4 года назад +2

    nice explanation

  • @mooredelira
    @mooredelira 3 года назад

    sounds great, when can I get it for my home? How often do you have to change the filters for a home sink?

  • @y.s8916
    @y.s8916 4 года назад

    Informative presentation!! What will be the salt rejection of GO based membranes and permeate recovery?

  • @brozbro
    @brozbro 3 года назад +1

    I just got back from the future. Housing developments along the coast are up in arms over the dumping of high concentrates of saline into sewer systems.

  • @payam1597
    @payam1597 2 года назад

    Nice! Thanks :)

  • @williamstolley2165
    @williamstolley2165 3 года назад +2

    This just came into my "feed" today, exactly one year after this video was released. I wonder if any progress was made. My concern about graphene isn't it's properties, but the ability to make graphene on an industrial scale. In theory, it has many potential uses. But in practice, it appears to be a very difficult medium to use in a mechanical device. I think graphene, like fusion, will always be one of those "wonder" concepts that prove more interesting in theory than they do in practice.

  • @lalruatdikavarte7943
    @lalruatdikavarte7943 4 года назад

    Nice video keep up the good videos.

  • @andrewwhite1065
    @andrewwhite1065 4 года назад

    This is revolutionary.
    The Australian state governments are not utilising our current desal plants fully because of the very high running cost and recent rain.
    Droughts are common and can last for up to 7 years in a number of regions.
    Can't wait for this technology to be commercialised, will definitely buy a small unit for the home.

  • @CatatanSiRebiaz
    @CatatanSiRebiaz 4 года назад

    wow,,, superb animation,,

  • @Jule-mm4dr
    @Jule-mm4dr 3 года назад

    This should be more talked about on TV. Instead of showering us with negative news and statistics the media should offer us something positive as this.

  • @DanBurgaud
    @DanBurgaud 3 года назад

    Im looking forward to this tech's industrial application soon!

  • @Arcamedi1
    @Arcamedi1 4 года назад

    This is a game changer

  • @hongquiao
    @hongquiao 3 года назад

    Human ingenuity is a beautiful thing!

  • @joefromravenna
    @joefromravenna 3 года назад +4

    I worked in a lab with a need of ultra pure water. Salts were the easy problem to fix. Colloidal silica was the SOB in that world. It has a nasty habit of fouling up deionizing and or filtration media and if it gets through that it fouls up lab machines. I first encountered it when washing windows at my restaurant job 25 years ago when i was in college. The s*** was caked on the window and vinegar wouldn’t touch it. Colloidal silica binds to surfaces and can’t be cleaned off.
    So the question is: “How does this system react to colloidal silica dispersed in most water?”

    • @ix-Xafra
      @ix-Xafra 3 года назад +1

      We need silica for collagen formation, don't we?

    • @joefromravenna
      @joefromravenna 3 года назад

      @@ix-Xafra yes we do. And different municipal water supplies have different levels. It’s necessary in biology but often rather damaging in industrial settings.

    • @ix-Xafra
      @ix-Xafra 3 года назад

      @@joefromravenna is silica abrasive when in colloidal solution?

  • @louisegogel7973
    @louisegogel7973 3 года назад +3

    Sunlight and vapor collection seems to be the most accessible way to desalinate water.

  • @larrybryant4827
    @larrybryant4827 3 года назад

    Nice discovery!

  • @rishykusuma5720
    @rishykusuma5720 2 года назад

    Thanks

  • @familyismail5522
    @familyismail5522 4 года назад

    Hi👋,I really want to know what the program used to have this amazing animation?

  • @deadspeedv
    @deadspeedv 3 года назад +6

    One major small problem this video does not address at all. Graphene Oxide is currently like $250 per gram. It is currently way too expensive to even approach replacing reverse osmosis purely to save on power.

  • @Pikminiman
    @Pikminiman 4 года назад

    That is super badass.

  • @trinitytwo14992
    @trinitytwo14992 3 года назад +1

    It would be good for new plants, the cost to retrofit existing plants would probably be prohibitive. Still this is excellent, keep going with the graphite wonders!

  • @soumitratewari483
    @soumitratewari483 4 года назад +4

    Sir please a video on how graphene is manufactured. Both in laborotary and Industry.

  • @jdogsenior5886
    @jdogsenior5886 4 года назад +5

    Great video, I actually work doing research on graphene oxide, and let me tell you, it is not cheap. Single laminate layers only a few mils in thickness are several thousand dollars and graphene is famously difficult to work with as it sticks to everything making it very very messy. Although it is an amazing structure with so many possibilities.

    • @34sarahwest
      @34sarahwest 3 года назад +1

      How toxic is it in this particular application? To us drinking the water I mean.

  • @gigglelingelf
    @gigglelingelf 3 года назад +5

    The US airforce already has a patent on this.

  • @issandiayetccsa7549
    @issandiayetccsa7549 3 года назад +3

    A lot of technologies are now being experienced by researchers but the transition lab-industry is still the biggest challenge.

    • @jokers7890
      @jokers7890 3 года назад

      not really.....the problem is capitalism, not research.

    • @akeiai
      @akeiai 3 года назад

      @@jokers7890 no, its not capitalism, its the viability of it when it comes to mass producing it. More often than not, research results show great success, but the way it is created makes it pretty unviable/expensive when it comes to making it available to all people

  • @moodberry
    @moodberry 3 года назад

    Excellent technology and graphics. However, the question I have is how does one clean the accumulated salt from the system. Somehow it has to be flushed, and that takes energy.

  • @basavarajukm4993
    @basavarajukm4993 4 года назад

    Damn!!! Awesome

  • @annu6930
    @annu6930 4 года назад +1

    sir can you be more frequent in your videos uploads please!

  • @theelectronicsengineeringg7362
    @theelectronicsengineeringg7362 4 года назад

    I live in UAE...for Arab countries this is a welcome technology for its bright future...good animation, thanks for the video

    • @deusexaethera
      @deusexaethera 4 года назад +1

      Israel has already reduced the cost of traditional RO filtration to a price of about 1 USD per liter, which is less than the cost of bottled drinking water. And Israel's method doesn't rely on experimental filter materials that can't be mass-produced yet.

  • @baguazhang2
    @baguazhang2 4 года назад +1

    It's a great application that has been around for some time, but the one thing people keep getting wrong is the energy of desalination. Current desalination filters are just about as efficient as thermodynamically possible. The energy it takes to remove salt from water is a fixed quantity. Even some researchers have made mistakes, claiming that graphene desalination could lower energy requirements by several orders of magnitude.

    • @specialopsdave
      @specialopsdave 4 года назад

      It's the pressurization, not the actual osmotic efficiency, that leads to savings. Lower pressure means thinner pipes and weaker pumps, meaning less expensive ones.

  • @pirihern9329
    @pirihern9329 4 года назад

    Very interesting. If and when affordable

  • @eyadalharbi7456
    @eyadalharbi7456 4 года назад

    Graphene has a really wonderful properties and promising applications, but the question is when can expect graphene to be mass produced?

  • @clobbopus_used_beat
    @clobbopus_used_beat 4 года назад

    Desal is top tier important future tech!

  • @S3b1Videos
    @S3b1Videos 4 года назад +2

    Capillary force is not "passive" as was stated in the video. Every movement requires energy; i.e. a difference in potential energy or concentration.

    • @Elrog3
      @Elrog3 4 года назад +4

      Passive only means it is a spontaneous process. It doesn't mean there was no energy involved. There is no contradiction there.

    • @jeremysimmons8864
      @jeremysimmons8864 4 года назад

      I think I see what your seeing. My guess is that the potential energy is being placed into the manufacturing process and these GO membranes have limited use or have to be "recharged" in some way. The swelling must have to do with the energy of the system. OR the video conveniently neglects to mention that the pumping that is attributed to the conventional RO process is also required for GO desalination process.

    • @S3b1Videos
      @S3b1Videos 4 года назад +2

      @@jeremysimmons8864 It's that there's water next to a hydrophile (GO) while there's no water on the other side. You could look at it as a chemical reaction: As long as there's no product (clean water), water will happily permeate due to osmosis (the energy being the potential difference between the right and left side). However, permeation rate should slow down until it reaches equilibrium at which point water has to be removed from the right side, or more "educt" is added to the left. At least that's my best theory that's coherent with physics.

    • @jeremysimmons8864
      @jeremysimmons8864 4 года назад

      @@S3b1Videos Interesting. I definitely need to read the researchers paper to gain some insight on the chemical aspect. I guess my biggest concern is with how the process is maintained and how much energy is required as compared to the conventional polymer membrane based RO.

  • @atadoff62
    @atadoff62 3 года назад

    This would taking the yachting industry by storm.

  • @dumo5749
    @dumo5749 3 года назад +1

    I always have an interesting idea. For the membrane that block the salt ions, if one side has no any water then does it mean net water molecules can pass through the membrane without applying any pressure on the other side. Furthermore, if we put the membrane horizontally and pour the saltwater on it, will the water molecules pass down through the membrane? Any answer is welcomed.

  • @JohnTrustworthy
    @JohnTrustworthy 3 года назад

    I don't know who reads the script but after replaying ME I find myself watching these vids just because the way they are narrated.

  • @josevelez7539
    @josevelez7539 3 года назад

    Uber educational!

  • @yogi4319
    @yogi4319 3 года назад +1

    Can this technology applied in an industrial scale? I don't see the scenario of sea water delivered to household gadgets for desalination.

  • @caph2o22
    @caph2o22 4 года назад +1

    Good explanation video, but as for the technology itself we'll have to see the actual results based on sizable real-world pilot tests.

  • @jonpaton4449
    @jonpaton4449 3 года назад

    How about a hybrid system? Does desalination have a most efficient temperature below the boiling point?

  • @luca920
    @luca920 4 года назад +13

    I don't think you can bypass osmotic pressure this easily, entropy is a hard to beat sonofagun. You'd still need pumps, otherwise this would break the second law of thermodynamics.

    • @charlesbray8109
      @charlesbray8109 4 года назад +2

      - gravity -

    • @Silverfirefly1
      @Silverfirefly1 4 года назад

      The term he used was capillary action, so some way to influence the pressure difference is definately required. Having that action in the filter be its most efficient is about good design and surface area.
      Entropy also gets its reward in the production of these exotic materials.

    • @Samuel_Morchin
      @Samuel_Morchin 4 года назад +3

      A thermal differential, perhaps. Have the salt water in a solar pool, and cool pipes on the other side. Hot water molecules from the saltwater side try to balance the thermal differential, traveling from one side of the filter to the other.

  • @CatboyChemicalSociety
    @CatboyChemicalSociety 3 года назад

    idk how u neatly stack sheets of GO when it comes in tiny black flakes since the process is made by exfoliation.
    did they just composite epoxy with graphene oxide to make a hydrophilic membrane which can be used for RO.
    Imma just try using crosslinked PVA mixed with GO and see where that gets me.

  • @amanbaghel7841
    @amanbaghel7841 4 года назад

    Sir , could u please make on how does the power plant work in hindi??

  • @infosyphongaming4309
    @infosyphongaming4309 4 года назад +2

    Instead of epoxy to hold graphine together due to swelling
    Could you just make graphine layers closer to compensate for swelling eliminating the epoxy step?

  • @slowanddeliberate6893
    @slowanddeliberate6893 4 года назад +1

    Is the left over salt sold as sea salt?

  • @635574
    @635574 4 года назад +4

    They arent actually using the pure graphene thats a unicorn to make and is only needed for computing.

  • @SirFency
    @SirFency 3 года назад

    this is cool. how do they stop the graphene sheets from getting clogged?

  • @anilkumar-ki1xb
    @anilkumar-ki1xb 4 года назад

    Bro, how much time it took to render

  • @kellyhofer
    @kellyhofer 3 года назад

    I wonder if a piezoelectric vibration would be enough to push water through with each vibration.

  • @cadaver76
    @cadaver76 4 года назад +2

    All good and well, but what about de brine thats left behind. no matter what u use, your alway left with brine. you cant dump is back in the sea, that would increase the local salt level and kill the marine life there.

    • @franckd5395
      @franckd5395 4 года назад +1

      Exactly! This is the most problematic point with desalination. Graphene does nothing to improve the possible ecological disaster that this technology could prove to be.

    • @specialopsdave
      @specialopsdave 4 года назад +1

      Properly planned sites should have the output brine mixed with so much seawater that it's non-toxic by the time it leaves the pipe, and we won't drive ocean salinity up over time because that's not how the water cycle works. It's cheapo bottom-dollar sites that would dump high concentrations straight in the ocean that we need to worry about

  • @sirtajali5841
    @sirtajali5841 4 года назад +6

    Who else love this Chanel

  • @TheyCalledMeT
    @TheyCalledMeT 3 года назад

    well done video, nicely explained .. but filtration right in your home? that means pipes would supply households with salt water ..
    salt water corroded pipes and not wanting to invest heavily to get it all fixed was the main reason for closing alcatraz.
    desalination plants providing drinking water makes more sense

  • @Jkauppa
    @Jkauppa 4 года назад

    you could use natural water mass pressure with simple pumps instead of complex pumps

  • @proverbial_physics
    @proverbial_physics 4 года назад

    due to increase in efficiency it is possible to convert salty sea water into pure water or we are just focusing on purifying water for recycling purpose?

  • @manavkukreja5023
    @manavkukreja5023 4 года назад

    There's a new technology called Flash graphene made, using the technique of flash joule heating. Can you please make a video to explain that?

  • @citizenfriendly3845
    @citizenfriendly3845 3 года назад +1

    What about filtering out chemicals and pollutens

  • @__-tz6xx
    @__-tz6xx 4 года назад

    I live near Salt Lake which has the Rocky Mountains nearby which we get enough fresh water from but it would be nice to get from the Salt Lake if the Mountains started to suck which I doubt they will.

  • @no_fb
    @no_fb 3 года назад

    I wonder what are the chances of getting GO fragments in the filtered water. Accumulating that in one's organism could be an issue in the long term.

  • @robertzeman4301
    @robertzeman4301 4 года назад +1

    What will happen with everything else that is not water or salt water?